XVIII International Conference on Water Resources
CMWR 2010
J. Carrera (Ed)
CIMNE, Barcelona 2010

INVERSE MODELLING OF HYDRAULIC CONDUCTIVITY
DISTRIBUTION BY ASSIMILATION OF RETURN FLOW DATA

* *
Ryan T. Bailey , Domenico A. Bau

’ Department of Civil and Environmental Engineering
Colorado State University, 1372 Campus Delivery
Fort Collins, CO, 80523-1372, United States
e-mails: rtbailey@engr.colostate.edu, domenico.bzni@tate.edu

Key words: Data assimilation, model uncertainty, groundwater

Summary. This paper demonstrates the use of an EnsembletB8erpbased on the Kalman
Filter methodology, to estimate hydraulic condutyimdistribution through assimilation of
groundwater return flow measurements into groundwaiodel simulation results.

1 INTRODUCTION AND THEORY

Deterministic, numerical models, such as groundwitdes models are not capable of fully
simulating the response of the system they aregydedito represent, due to approximation of
physical processes and inadequate knowledge afraysarametetsin an attempt to address
these inadequacies, data assimilation (DA) teclasiduave frequently been used to reduce
uncertainty attached to both state and parametémas®orf. The Kalman Filtet (KF),
designed for linear dynamics, has been used extdnsn physically-based modeling studies
to assimilate real-world measurement data into i@deilts and provide optimal estimates of
state and parameter variables.

Following a standard Bayesian framework, the KR istatistical routine in which prior
information (i.e., numerical model results) is nmedgyith information from the actual system
(i.e., measurement data) to produce a correctestepor system estimate. The algorithm
follows the sequentidiorecast-update cycle, with update of the system occurring wheneve
measurements are available. In fbeecast step, the model stadé is run forward in time
based on model formulation, parametBrsforcing termsg, boundary condition®, model
error w described by a Gaussian probability density fumct{PDF), and solution to the
mathematical modab, generating the prior system informati¥h. 1, where thd superscript
represent$orecast:

X o1 = ®Xy; P q; )
k1 = P q;b) + wy

In the update step, measurement data are collected from the actual system at time
k+1, perturbed with a Gaussian erxoto create the measurement vedqr;, and assimilated
into the model forecast results to generate a fosttate estimateXy: 1:

Xi1 = X o1 + Kiyoy(Dir — HX  111) @
The matrixH maps model results at measurement locations tamlanteasurement values,
creating a residual of the variable in questiore Kalman Gain matrix, is given by
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K= C’H"(HC'HT + R)™! ®)
whereC' is the error covariance matrix associated withrttuglel forecask{** andR is the
measurement error covariance matrix associated theéhperturbed measuremerids The
formulation of K i) allows spreading of measurement informatiorogighout the model
domain according to spatial correlation of modslits, and ii) acts as a weighting term that
scales correction terms according to mo@3 4nd measuremerR) error.

Limitations of the KF scheme, namely the restrictio linear dynamic models and the
requirement to represent error statistics with ykdéfined probability-density functions
(PDF), has led to ensemble schemes, i.e. the Eneel#man Filtet (EnKF) and the
Ensemble Smoothe(ES), which use an ensemble of Monte Carlo modalizations to
approximate the PDF of the model and measuremeat statistics. Whereas the EnKF
provides an updated model state given all previoeasurement data, the ES scheme
incorporates all previous model states and measnedata into the update routine, allowing
previous model states to be corrected with the iaitiqun of new data. These methods have
been used extensively in hydrologic modeling tontif\a and decrease uncertainty of model
result§”® as well as estimating uncertain system parantefels In the latter, a typical
objective is to estimate hydraulic conductivitytdisution through assimilation of hydraulic
head measurements.

In this paper, the ability of the ES to accuratedyimate system parameters using system
response measurements is explored using a syntB&ictransient groundwater flow
simulation. Specifically, groundwater return flowlymes (RFV) to a stream are used to
condition the hydraulic conductivity (K) field ugnmeasurements from one or more
simulation times. Sensitivity analyses are caroeed to gain insights into the influence of
measurement error, the number of stream gage ¢osatthe number of assimilation times,
and the correlation length of the K fields. Forl teeam-aquifer systems, fluxes to the stream
from groundwater could be calculated as long asatembalance for a given reach of the
stream is conducted.

2 PARAMETER ESTIMATION USING THE ENSEMBLE SMOOTHER

To achieve parameter estimation, the state madris augmented to include uncertain
model parameter values, allowing the spatial cati@mh between parameter and state
variables to correct both the state and parametleres. In this work, return flow volumes
(RFV) and hydraulic conductivity (K) values are apedd using RFV measurements. In the ES
format, X' is comprised of both RFV and K variables, fromdiirto k:

4
X{: = [X(RFV)l, ---rX(RFV)k;X(K)] [(n k) +e]xnmc @
wheren is the number of model nodesjs the number of parameters that characterize the
system, andimc is the number of Monte Carlo simulations. K valaes only added once to
the state matrix since they are assumed to be itidependent. Initially, only RFV
measurements are used to condition the ensemiiefiefds, although K measurement data
can also be added ifor further conditioning:



Ryan T. Bailey, Domenico A. Bau

5)

D = [D(va)l, ...,D(RFV)k;D(K)] [(m k) +e]xnmc
wherem is the number of measurements collected at a diven In a groundwater modeling
framework, the forecast step consists of runnimgsiimulations. An ensemble of groundwater
flow simulations is initialized with an ensemble Kffields and initial hydraulic head fields.
The K fields are generated using a sequential Gausagorithm, called SKSIM with
geostatistical parameters mean (u), variang®, @nd correlation lengthA). Boundary
conditions and forcing terms are applied throughbetsimulation. An additional K field and
associated flow simulation, from which measuremeats be taken, provide a “true” state
against which the updated K fields can be compared.

The update step consists of populatfgvith the ensemble of RFV and K values, taking
measurements from the “true” state, and runninggBeaupdate routine to provide an updated
model state. Measurement coefficient of variatempplied to measurements to incorporate
measurement error. The performance of the rousnanalyzed by comparing the updated
model state to the “true” state Vta

nmc n (6)

1
AEQD = ———— "> [Xij — Xoorue|

j=1i=1

v

nmc n

1 -
nmec * nz zlxi'j _Xil

j=1i=1

AES(X) =

The absolute error term (AE) compares the modelesto the “true” value at each location
in the model domain, and the average ensemble &jpdzS) compares the model values to
the ensemble mean at each location, providing auneaf the spread of the values.

3 GROUNDWATER FLOW SIMULATIONS AND PARAMETER ESTIMA TION

3.1 Forecast

The 2D transient groundwater flow problem consigtan areal aquifer 2000 m west-east
by 4000 m north-south (Figure 1), solved usingfthite-element code SAT2B. An initial
ensemble of 100 log-normal K fields was generatéith \BKSIM™® using an exponential
correlation model and with mean of -4.30 (log m™§ewariance of 0.434 (log m s&¢, and
correlation length of 300 m. Three other K ensem\blesing correlation lengths of 500 m,
1000 m, and 1500 m, were also created to studyirnttheence of correlation length. The
triangular-element mesh consists of 3321 nodes& elements, with each block of 2
triangular elements assigned a different K value.
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Figure 1: Plan view of 2D conceptual model, showiegresentation of return flows and recharge series

'_Gage

L

‘_Gage

Average aquifer saturated thickness and speciétdyivere 30 m and 0.20, respectively,
for all simulations, and constant-head boundarfe32om and 28 m were placed on the west
and east ends of the aquifer. Head fields prodigesteady-state simulations were used as
initial conditions for the transient problem, whicbnsisted of a 365-day simulation using a
time step of 1 day. The constant-head boundarherast side of the aquifer was treated as a
stream, with the flows leaving the model domaimglthis boundary treated as return flows
to the stream. Return flow volumes were calculdigdsumming flows between designated
stream gage locations between two moments in tiigufe 1). An additional K field and
flow simulation were created to provide “true” fisl from which measurements were
collected and against which update ensemble coaldcdmpared. AE and AES for the
ensemble of K fields are 0.482 and 0.346, respalgtiv

3.2 Update using RFV Measurements

Conditioning of K fields using RFV measurements wasdertaken for various
measurement times, stream gage locations, measuremer, and K correlation length. The
number of assimilation times ranged from 1 (measerds taken only at 365 days) to 52
(weekly measurements); the number of gage locatianged from 1 (gage located at south
end of stream) to 20 (gages located every 200 n@asorement coefficient of variation
ranged from 0.00 to 3.00; and correlation lengthesduwvere 300 m, 500 m, 1000 m, and 5000
m. Assimilating RFV measurements once a year predlu8E and AES values of the K
ensemble of 0.384 and 0.286, respectively, an imgment of 20.7% and 17.7%,
respectively, from the forecast values of 0.482 &nh846. Increasing the number of
assimilation times only slightly improves the AEJafAES terms (Figure 2A). Using 1 stream
gage and assimilating measurements bi-weekly pestiU E and AES values of the K
ensemble of 0.424 and 0.328, and improvement @4znd 5.5% from the forecast values.
These values are greatly improved when 4 gagesiswe (Figure 2B), with a reduction of
25.0% and 25.1% from the forecast values. Minorrowpment is made by using 20 gages
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instead of 4 (Figure 2B).
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Figure 2: Effect of (A) the number of assimilatibmes and (B) the number of stream gage locationhe
update K ensemble.

The correlation length used in creating the inkia@nsemble dramatically influences the K
update, with AE and AES improvement of only 7.9%l 44.0% when a length of 300 m is
used, opposed to an improvement of 29.1% and 288&n a length of 1500 m is used.
Comparisons of the K “true” state with the K updatesemble mean and update ensemble
standard deviation for a correlation length of 1%50QFigure 4) provides a much stronger
conditioning of K than for the scenario using agignof 300 m (Figure 3).
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Figure 3: (A) K “true” state, (B) K update ensembiean, and (C) K update ensemble standard devjation
conditioned by bi-weekly RFV measurements at 4mgpcations, using a correlation length of 300 m.
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Figure 4: (A) K “true” state, (B) K update ensembiean, and (C) K update ensemble standard devjation
conditioned by bi-weekly RFV measurements at 4 mgupcations, using a correlation length of 1500 m.
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3.3 Update using both RFV and K Measurements

Further update scenarios were run using both RFY¥ lKinmeasurements to jointly

condition the K ensemble across the four corrafaimgths. Figure 5A shows the values of
AE across all correlation lengths for the threenat®s of (a) only 10 K measurements are
assimilated, the measurement location shown inrei@4, (b) only RFV measurements are
assimilated, at 4 gage locations and collected dskly, and (c) both RFV and K
measurements are assimilated.
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Figure 5: (A) Effect of correlation length on K abtioning for scenarios of both K and RFV measuretne
assimilation, and (B) Effect of measurement erroKoconditioning.

Of the three scenarios, (b) has the smallest inflaeon conditioning the K ensemble,

followed by (a) and then (c). However, varying meament error for K shows that
conditioning ceases as K measurement error incse@s®.70 (Figure 5B). In contrast, K
conditioning remains practically unchanged when RE®asurement error increased to 0.70



Ryan T. Bailey, Domenico A. Bau

(Figure 5B). The conditioned K ensemble mean fra@nario (c) (Figure 6) has an AE of
0.293, an improvement of 39.5% from the forecastearble, and accurately reflects the K
distribution from the “true” state, shown in FigutA.
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Figure 6: K update ensemble mean using bi-weekly Rieasurements at 4 gaging stations in additidtOt&
measurements. Compare with reference K field imfégtA.
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4 CONCLUSIONS

From results shown in section 3, the ES update sehis successful in using RFV
measurements to condition the K fields to appraheh“true” K field. This conditioning is
most sensitive to the correlation length used imegating the K fields (Figures 3,4), followed
by the number of stream gages used and the nunibereasurement assimilation times
(Figure 2). The vast improvement in K conditioniwgh increased correlation length is due
to the RFV occurring on only one side of the madi@inain. In order for spatial correlations
to exist between the measurement locations and atipgfer locations, and hence for the
RFV measurements to condition the K values throughize aquifer, the correlation lengths
must be significant. Assimilating 10 K measurementthe 800 ha aquifer conditions the K
ensemble better than assimilating bi-weekly RFV soeaments at 4 gaging locations. If
errors are assigned to measurements, however, RE¥Surements provide a better
conditioning of the K ensemble.

Future studies might include conditioning of K @islusing ground water flows to a
stream using a model that could simulate more s&alisurface water/ground water
interactions, such as a catchment hydrology mdagldouples surface and variably-saturated
subsurface flow.
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