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Summary. We study a representative mathematical model of groundwater flow where
a dynamic position of the water table is a part of unknown solution. To compute the
problem on a fixed (enlarged) domain we describe the groundwater table using a level set
formulation. A novel discretization method is proposed to solve the problem on a fixed
grid. Numerical results confirm the applicability of the method for this type of problems.

1 INTRODUCTION

Level set methods are very popular mathematical tool for the solution of problems
with moving boundaries and interfaces [9, 8, 4, 5], especially for the numerical solution
of two-phase flows [3]. The idea is to describe the free boundary implicitly as a zero set
of some level set function. The advantage of such formulation is a possibility to use fixed
computational grids without moving grid points.

In this work we propose a level set method for the numerical simulation of groundwater
flow with a free water table. In section 1 we introduce the representative mathematical
model. In section 2 we propose the numerical method and in section 3 we present numer-
ical experiments.

2 MATHEMATICAL MODEL

Let D C R? be a unit square. Let I'(t) C D be a curve that describes in time ¢ > 0 the
dynamic position of groundwater table and §2(¢t) C D be the subdomain “bellow” I'(t).
Finally, Q°“(t) := D\ Q(¢).

The groundwater flow is considered only in Q(t), ¢ > 0 and is characterized by an
unknown pressure p = p(x, z,t) that obeys the partial differential equation

V-¢=0, ¢=—-KV(p+pgz). (1)
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All parameters in (1) are constant. The dependence of p on ¢ is only due to the dynamic
position of I'(¢).
Furthermore, we suppose that 0Q(t) =T

tyUrP Uy and

(
)

p(x,z,t) =0, (z,2) € T'(¢), (2)
p(:L‘,Z,t) :pD<x>z)7 (‘T? Z) € FD> (3>
ii(x,2) - Vp(z, 2,t) = p™(z,2), (z,2) € IV, (4)

where 7 is the normal vector with respect to I'"V.

Finally, we suppose that the movement of I'(¢) is prescribed by the speed f = f(z, 2, 1),
(z,z) € [(t) that is defined in normal direction N = N(z, z,t) with respect to I'(t)
(pointing from §2(¢) to outside) and that is equal to

f=gN-(7-Ac). )
Following [1], 0 is a given effective porosity and A = A(z, 2,t), (x,z) € ['(¢) is a given
velocity of accretion.

The system (1) - (5) constitutes our mathematical model to introduce a representative
example of groundwater flow with dynamic water table.

Next we continue to describe the dynamic position I'(¢) of groundwater table using a
level set formulation. Let the initial position I'(0) be given implicitly as the zero level set
of some function ¢° = ¢%(z, 2), i.e., T'(0) = {(z,2) € D, ¢°(z,z) = 0}. Moreover, let
Q(0) be given by Q(0) = {(z,2) € D, ¢°(x,2) < 0}.

An important (nontrivial) step of level set formulation is to find a (smooth) velocity
function V = V(z, z,t) such that V = fN for (z,z) € I'(t), see later. Once V is given,
we can search for the solution ¢ = p(z, 2,t), (z,2) € D, t > 0 of advection equation

Ohp+V-Vo=0, ¢z,20) =¢"z,2), (6)

that describes implicitly the time dependant position of the interface, i.e., I'(t) = {(x, z) €
D, o(x,z,t) =0} and Q(t) = {(x,2) € D, ¢(x,z,t) < 0}. Some standard, e.g., Dirichlet
or outflow boundary conditions, can be considered with (6).

Before introducing our choice of V in (6), we need to define for a fixed ¢ the so called
signed distance function ¢(z, z,t) for the interface I'(¢) that is a (weak) solution of the so
called eikonal equation [9, 8],

IVo(x,z,t)| =1, (x,2) €D, o¢x,z,t)=0, (r,2)eTl(t). (7)

To find ¢, we search for the stationary solution ® = ®(z, z, s) of two equations
0s®(z,2,8) + |[VO(x,2,58)| =1, (x,2) € Q(t),s>0, (8)
0s®(x,2,8) — [VO(2,2,8)| = -1, (x,2) €Q(t), s>0. 9)

2
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The initial condition for (8) - (9) are given by ®(z,2,0) = ¢(z, 2,t), (z,2) € D, and the
boundary conditions for (z, z) € I'(t), s > 0 by ®(z, z,s) = 0. The treatment of boundary
conditions on D can be found, e.g., in [6].

Let the stationary solution of (8) - (9) be reached for some finite time S > 0, then
o(z, 2,t) := ®(x, 2,5). Note that I'(¢) is the zero level set of ¢(z, z,t) and P(x, 2, s).

Having ¢(z, 2, 1) for a fixed ¢, we search for f = f(z, z,t) such that f(z, z,t) = f(z, z, 1),
(x,z) € I'(t), and

Vo-Vf=0. (10)

To find more easily the function f for a fixed ¢, we can again search for the stationary
solution F' = F(x, z, s) of following advection equations

O F +V¢-VF =0, (11)

that are solved for s > 0 independently in two subdomains Q(¢) and Q°*(¢). The boundary

condition on ['(t) = 9Q(t) N QU (t) is given by F(w,z,s) = f(z,2,t). Again, such

stationary solution is obtained at some finite time S > 0 and f(z, 2,t) = F(x, 2, S).
Once the function f is found, the velocity V used in (6) is defined by V = fV¢.

3 DISCRETIZATION METHOD

We describe our discretization method using standard notation of finite differences. To
do so, let us discretize D by a grid made of points (x;, 2;), 0 < 4,5 < I, where I is given
and h = 2,41 — x; = 2j41 — 2j.

Let ¢); := ©°(24,2;). The values ¢} will approximate o(z;, 2;,t") for some discrete
time points 0 =t < t! < ... <" < ... and will be determined in our algorithm.

To find a polygonal approximation I'} of the interface I'(¢"), we will assume a linear
interpolation between 7, and its (at most four) neighbouring values.

Throughout this paper we say that (k,1) € A}, if o5 <0, and (k,[) is the index of one
of existing neighbours ¢}, ;. or ¢}, and, moreover, iy < 0. Clearly, if (k,1) € A7,
there exists a zero point of the linear interpolation on the edge between (x;, z;) and (xy, z).
To determine such point, one can find & € (0, 1) such that

0=agl+(1—a)gf, = a=—"_ (12)
Pri — Pij
and the zero point (7, z) of linear interpolation between ¢} and ¢}, is given by

n
Pij

N Ol
(z,2) = 7(@-,2-)—1—7” ~
! Yi; — Pri

= oy o (Ik, Zl) . (13)

Pri — Pij

Therefore, I'}} can be represented by a polygonal that connects all such zero points.

Analogously, we can define Qf ~ Q(t"). Due to our assumptions we have that (z;, z;) € QF

if gofj < 0. If gp?j = 0, one has (x;,2;) € I'l, but in general I'} does not cross the grid
points.
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3.1 NUMERICAL SOLUTION OF GROUNDWATER FLOW
Let the values ¢} be know. We discretize (1) by standard finite differences

4p% B 23;LJrlj - ZA’?—U - ﬁ%+1 - p?j_l =0. (14)

The discrete equations (14) are constructed only for grid points (z;,2;) € Q¢ UTY. For
the values pf; in (14) with corresponding indices one has py; = py; if (k, 1) ¢ Af;. Standard
treatment of Neumann and Dirichlet boundary conditions shall be used, including the
case py; = 0 if ¢p; = 0.

To define py;, (k,1) € A};, we extrapolate linearly the non-existing discrete value of p
in the grid point (zy, ;) using (12) and (13). By exploiting that p(z, z) = 0, we obtain

P =y, (k1) € A, (15)
Pij
A caution is necessary for very small values of ¢7;, see [7].

To determine the values pj; ~ p(x;, 2;,t") for the grid nodes (z;, z;) € QU 'V, one has
to solve a linear system of algebraic equations. When done, the values ¢;; ~ q(xi, 2, t")
can be computed for (z;, z;) € QF by

_ L
-~ 2h

C]T'j (ﬁ?—s—lj - f’?—u ) 25%+1 - P?j—1) . (16)

To proceed with (14) from n to n + 1, we need to compute the values @Z“ using some
approximation of advection equation (6). In next section we describe how to obtain the
discrete values V7 ~ V(z;, z;,t™). Once such values are available, we use the standard
n+1

first order accurate upwind method (explicit in time, see, e.g., [4]) to compute ¢;’

3.2 NUMERICAL SOLUTION OF EIKONAL EQUATION

Let the index n be fixed. To discretize (8) and (9), we follow [2] and introduce a
numerical scheme valid for 0 <i,5 < T and m=0,1,...

1
I = I 4 A" (1 - Bt (Achy;)z) , (17)

where a particular sign of + has to be chosen analogously to (8) or (9). Furthermore,
A, @ = max{| Mt [Mi-1;]}, A9 = max{[ M, [Mi;}, (18)

and

min{®", — &7 0}, ¢ >0,
My, = { + ’ ! (19)

max{®7" — om0}, ¢f <0.
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The definition (18) is valid without changes if 0 < 7,5 < I, otherwise the values of M
with the indices of non-existent grid points are simply skipped in (18).
Analogously to previous section, one chooses in (19) that ®}) = @7} if ©};pp; > 0 and

= Z—%@?} if piipR < 0, see also the related discussion in section 3.1.

The time step in (17) is chosen typically to be As™ = h/2 that insures a stability in
the case of uniform grids [2]. Unfortunately, this stability can be disturbed for the grid
points (x;, z;) near I'}.

For such grid points we slightly modify the scheme (17) to allow larger time steps. We
are inspired by similar approach used in [4] and by exploiting a close relation between the
signed distance function and the so called first arrival time function [9, 6].

By simplifying the topic and without going into much details, one can consider for the
grid points (x;, z;) near to I'} the following numerical scheme

It = 1 F As™ f\/ ALOT)? 4 (A, 012, (20)

that can be seen as analogous to (17) if applied to equation 0,® = F|V®|. Using (20),
one can define a special time step A“*s? such that Ot =0 if As™ = AsT in (20),
ie.,
i @717
ACTZ m —
/L] m m
J BB+ (B

that can be viewed as an approximation of the first arrival time function at (x;, z;).
Applying these ideas in the context of (17), we replace (17) for the grid points (x;, ;)
near I'} by the scheme

(21)

oIl = @I £ Ash (1 - h\/ (A7) + (A, P72 ) (22)

where As}? = min{As™, A“*s7}. In such a way, the modified scheme (22) has no stability
restriction on the ch01ce of As™

In theory, one has to apply (17) with so many time steps m, until a steady state is
reached. In practice, only some fixed number of time steps might be used, say m = M.
Once finished, ¢}; = oM

It is important to note that although ¢ and ¢ has an identical zero level set, this is not
necessary the case for their approximations. Therefore, the approximation of ¢ is used
only to represent implicitly I'} and €2}, see section 3, and the approximation of ¢ is used
to approximate V¢, see the following section.

3.3 NUMERICAL SOLUTION OF VELOCITY EXTRAPOLATION
To approximate f in (5), for (z;,z;) € Q such that A7, # () we define
. 1 Vi
wo_ L VO AnE, 23
§ T (@A) )
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where

?4_1]' - gb?—lj ¢%+1 — ¢%_1> . (24>

Vo = < 2h T 2h

To compute the approximative values F/7" for the solution F' of advection equation (11),
we apply again the standard upwind method.

In the exact case of (11), F' is known and fixed on I'(¢). In our numerical approximation,
we use a simple approximation by fixing the values of F]' = _g for (x;, z;) € Q2 such that
Al # (). We are aware of the fact that such an approximation is rather rough, see our
numerical experiments, and in future we plan to improve this part of the algorithm.

Concerning the initial condition, for n = 0 no straightforward definition of Fzg is
possible, and it can be chosen rather arbitrary. One has then to insure that enough time
steps are computed, say m = M, to obtain F% being in steady state. For n > 0, similarly
to section 3.2, one can compute Fj only for a fixed number of time steps, say m = M,
using Fjj = l-’}’l. Once done, fj = F}.

4 NUMERICAL EXPERIMENTS

To test our algorithm, we compute two examples where the exact solution is known. In
all examples, Dirichlet boundary conditions are chosen for (1) always on the left and right
side of D and the Neumann boundary condition on the bottom of D such that specified
stationary pressure fulfils them exactly. We choose a rather coarse mesh with h = 0.125
to illustrate visibly the numerical approximations used in our algorithm. The time step
is chosen As = 0.05, the time interval is (0,0.3), and K = p = 1.

Firstly, we test if a straight horizontal groundwater table is reached when its initial
position is disturbed. To do so, g =1, ©° = ¥, and

U(z,z)=7r(0,0.75) —r(z,2), r(z,z):= \/(x —0.5)2+ (2 — 1.5)2. (25)

The numerical results for n = 0 can be seen in Figure 1. The numerical solution
approximates the steady state at t = 0.3 very well, but we do not present the results here.

The second example is proposed in such a way that the stationary solution is given by
P(x,2z) =In(r(0,0.75)7') —In (r(z, ) ') if no gravity is present, i.e., g = 0. The distance
function to the zero level set of P is given by W in (25). The speed A(z, z) in (5) is chosen
such that f(x,z) = 0in (5) for (z,2) € D and ¥(x,2) =0, and § = 1, i.e.,

1

A= —
0. v

(VP-VV) . (26)

The exact pressure P and the velocity ¢— A€, can be seen on the left picture in Figure 2.
We start the simulation with the horizontal groundwater table, i.e., ©°(z, z) = 2 —0.75.
The corresponding numerical results are given in Figure 2.
For an illustration of other properties of the method (including its convergence), the
numerical steady state results for the grid 12 x 12 at ¢t = 0.3 are presented in Figure 3.
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Figure 1: Numerical solution of Example 1, the contours of pressure p°, the groundwater velocity ¢°, and
the grid points (left picture), the contours of level set function ¢° and of extrapolated velocity f° (middle
picture), and the advection velocity V° (right picture).
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Figure 2: Example 2, the exact stationary pressure P and the velocity §— Ae, (left picture), the numerical
initial pressure p° and the velocity ¢° — A€, at t = 0 (middle picture) and at t = 0.3 (right picture).
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