
XVIII International Conference on Water Resources
CMWR 2010

J. Carrera (Ed)
c©CIMNE, Barcelona, 2010

COMPARISON OF CPU AND GPU
IMPLEMENTATIONS OF THE LATTICE BOLTZMANN

METHOD

James .E. McClure∗, Jan F. Prins† and Cass T. Miller∗

∗ Department of Environmental Sciences and Engineering
CB 7431, 148 Rosenau Hall

School of Public Health
University of North Carolina

Chapel Hill, North Carolina 27599-7431

†Department of Computer Science
University of North Carolina

Chapel Hill, North Carolina 27599-7431

Key words: Lattice Boltzmann Methods, Permeability Estimation, Graphics Pro-
cessor, GPU, Multi-relaxation time, MRT

Summary. The lattice Boltzmann Method (LBM) has become a standard tool for
estimating porous medium permeabilities from image data and numerically generated
packings. We consider implementations of the single-relaxation time BGK scheme for
single phase flow as well as a more computationally intensive multi-relaxation time
(MRT) scheme. Results demonstrate that a considerable performance increase is
achieved by implementing on graphics processing unit (GPU) for both methods. The
MRT scheme is shown to provide a more efficient means for permeability estimation
on GPU relative to the BGK approach. The increased accuracy of the MRT scheme
allows accurate permeability measurements to be obtained at lower resolutions, more
than offsetting the increased computational cost associated with MRT.

1 INTRODUCTION

Utilization of graphics processing units (GPUs) for high-performance computing
can demonstrate significant performance benefits for memory-bandwidth limited ap-
plications 1, 2. Many LBM schemes rely on local information only, a computational
structure which is ideally suited to GPUs. Relative to CPU implementations, GPU
implementations of the lattice Boltzmann (LBM) often achieve performance increases
of an order of magnitude.

1



J. E. McClure, J. F. Prins and C. T. Miller

Single component LBM solve the Navier-Stokes equations by exploiting the re-
lationship between kinetic and continuum theory. Such schemes offer significant
advantages over numerical Navier-Stokes solutions when massively parallel imple-
mentations are required or where complex boundary conditions must be accommo-
dated. These requirements have resulted in a proliferation in the use of LBM for
porous medium applications, where large domains and complex solid boundary con-
ditions are requisite. The LBM has become a standard tool for estimation of porous
medium permeabilities 3. Multi-relaxation time (MRT) schemes provide much more
accurate permeability estimates compared to the less computationally-intensive BGK
scheme4. In this work, we compare the computational behavior of the MRT and BGK
LBM on CPU and GPU. These results motivate the use of GPUs for permeability
estimation in porous media. We consider the tradeoff between increased accuracy of
MRT and its increased computational cost relative to the BGK scheme.

2 METHODS

2.1 The Lattice Boltzmann Method

In this work,we two commonly used implementations of the LBM for modeling
single phase flow, both of which use a three-dimensional, nineteen velocity vector
(D3Q19) structure. The computational domain is defined by a rectangular prism
with sides of length Nx, Ny and Nz. The domain is discretized by regularly spaced
lattice nodes xi where i = 0, 1, . . . , N − 1, N = NxNyNz. Our implementations
utilize a three-dimensional nineteen velocity (D3Q19) model:

ξq =


{0, 0, 0}T for q = 0
{±1, 0, 0}T , {0,±1, 0}T , {0, 0,±1}T for q = 1, 2, . . . , 6
{±1,±1, 0}T , {±1, 0,±1}T , {0,±1,±1}T for q = 7, 8, . . . , 18

(1)

Each velocity vector ξq is associated with a distribution fq/ The fluid density and
velocity are obtained from these distributions:

ρ =

Q−1∑
q=0

fq, (2)

u =
1

ρ

Q−1∑
q=0

ξqfq. (3)

Since density and velocity can be obtained directly from the distributions, a numer-
ical solution for fq implies a solution for ρ and u. The solution for the LBM is

2



J. E. McClure, J. F. Prins and C. T. Miller

provided by solving the lattice Boltzmann equation (LBE), which may be generally
expressed in the form:

fq(xi + ξq, t+ 1)− fq(xi, t) = Jq, (4)

where Jq is a collision operator which accounts for changes in fq due to the inter-
molecular collisions. Solution of Eq. 4 is usually accomplished in two steps, referred
to as streaming:

f ∗q (xi + ξq, t+ 1) = fq(xi, t), (5)

and collision:
fq(xi, t+ 1) = f ∗q (xi, t+ 1) + J∗q. (6)

Permeability estimates are obtained by assuming the macroscopic flow obeys
Darcy’s law:

−∂p
∂x

+ ρg =
ρηv

κ
, (7)

where p is the pressure, ρg is the external force, η is the fluid viscosity, v is the mass
averaged velocity over the domain and κ is the permeability.

2.1.1 Single-Component BGK Model

The BGK model assumes that the distributions relax at a constant rate toward
equilibrium values f eq

q prescribed by the Maxwellian distribution. The collision term
for the LBGK model is:

Jq =
1

τ

(
f eq

q − fq

)
. (8)

The relaxation rate is specified by the parameter τ , which relates to the fluid viscos-
ity:

η = 1
3

(
τ − 1

2

)
. (9)

The equilibrium distributions approximate the Maxwellian distribution, For the
D3Q19 model, they take the form:

f eq
q = wqρ

[
1 + 3(ξq·u) + 9

2
(ξq·u)2 − 3

2
(u·u)

]
(10)

where w0 = 1
3
, w1,...,6 = 1

18
and w7,...,18 = 1

36
. This choice of equilibrium conditions

ensures that mass and momentum will be conserved.

3



J. E. McClure, J. F. Prins and C. T. Miller

2.1.2 Single-Component Multi-Relaxation Time Model

In the BGK approximation to the collision term given by Eq. 8, all non-conserved
hydrodynamic modes relax toward equilibrium at the same rate. Multi-relaxation
time schemes are constructed so that different hydrodynamic modes may relax at
different rates. In vector space, many physically significant hydrodynamic modes are
associated with linear combinations of the distributions fw

q :

f̂m =

Q−1∑
q=0

αm,qfq, (11)

where αm,q represents a set of constant coefficients associated with a particular mode
m. Since we may specify Q independent, linear combinations of fq, coefficients must
be defined for m = 0, 1, 2, . . . , Q − 1. The coefficients must be chosen carefully
in order to ensure that the moments correspond with physical modes which are
hydrodynamically significant. The coefficients αm,q are obtained by applying a Gram-
Schmidt orthogonalization to polynomials of the discrete velocities 5. The resulting
set of moments include density, momentum and kinetic energy modes, as well as
modes associated with elements of the stress tensor. The relaxation process is carried
out in moment space, with each mode relaxing at its own rate specified by λm:

Jq =

Q−1∑
m=0

α∗q,mλm

(
f̂ eq,

m − f̂m

)
. (12)

The inverse transformation coefficients α∗q,m map the moments back to distribution
space, and represent the matrix inverse of the transformation coefficients αm,q. The

equilibrium moments f̂ eq,
m are functions of the local density ρ and momentum j. The

relaxation parameters are chosen to minimize viscosity dependence on permeability:

λ1 = λ2 = λ9 = λ10 = λ11 = λ12 = λ13 = λ14 = λ15 = λA =
1

τ
(13)

λ4 = λ6 = λ8 = λ16 = λ17 = λ18 = λB =
8(2− λA)

8− λA

(14)

2.1.3 GPU implementation of the LBM

Each GPU consists a very large number of cores capable of handling computations.
The GPU is utilized most efficiently when each core is able to execute computations
independently from other cores. CUDA is a programming language designed with

4



J. E. McClure, J. F. Prins and C. T. Miller

GPU applications in mind. Computations are divided among the GPU cores by
decomposing the computational domain into a grid of threadblocks which may be
executed in any order. This ensures code which scales proportional to the number of
cores, while imposing algorithmic constraints on the programmer. Unlike CPU ap-
plications, which can take advantage of specialized computations to achieve optimal
performance, CUDA relies on computational kernels executed by each thread.

N -�

Dist: n-� n+s1-� n+s2-� n+s17-� n+s18-�

? ? ? ? ? ?

f0 f1 f2
. . . f17 f18

?

Collision

?

f0 f1 f2
. . . f17 f18

? ? ? ? ? ?

Copy: n-� n-� n-� n-� n-�

Figure 1: Schematic illustration of array structure and kernel execution in CUDA.

The structure of the kernel is illustrated by Fig. 1. The nineteen distributions
are packed into a single array which is indexed such that Dist[N ∗ q + i] = fq(xi, t).
In order to fuse the streaming and collision operations into a single memory access,
the two-array streaming (TAS) algorithm was used. Streaming is accomplished by
reading registers from the array using a set of offsets sq to pull distributions from
the adjacent lattice nodes. The streaming offsets are defined by:

sq = ξq·


1
Nx

NxNy

 . (15)

The registers, denoted by f0, f1, . . . f18 in Fig. 1, are used to carry out the collision
step. For BGK, additional registers must be allocated to store the density ρ and
velocity u. These moments are included in the nineteen additional registers required
by MRT. At the implementation level, only two relaxation parameters λA and λB

5



J. E. McClure, J. F. Prins and C. T. Miller

are passed to the MRT kernel in CUDA. After the collision process has been applied,
f0, f1, . . . f18, are written a copy of the distribution array, indexed in the same way.

3 RESULTS

Performance of BGK and MRT LBM was evaluated for dense lattice sizes ranging
from N = 163 to N = 1923 on GPU and N = 83 to N = 1283 on CPU. Nvidia Quadro
FX 5600 cards were used to perform GPU calculations, whereas CPU calculations
were performed on a 3.0 gHz Intel Clovertown processor. A highly optimized swap
implementation was used to execute the streaming step on the CPU, shown to be
far superior to TAS for CPU 6.

(a)

nthreads = 128

nthreads = 64

nthreads = 32

nthreads = 16

10 4 10 5 10 6
90

100

110

120

130

140

150

160

170

180

190

200

210

220

GPU Performance of MRT LBM

N

M
L
U
P
S

(b)

nthreads = 128

nthreads = 64

nthreads = 32

nthreads = 16

10 4 10 5 10 6

100

120

140

160

180

200

220

240

GPU Performance of BGK LBM

N

M
L
U
P
S

Figure 2: GPU performance of the LBM for various thread counts for (a) BGK (b) MRT.

Fig. 2 shows the performance of BGK and MRT implementations as a function
of domain size with a range of thread counts. Performance is evaluated in terms
of million-lattice-updates-per-second (MLUPS). Performance of the LBM on GPU
depends on the number of threads executing at a time. Optimal results are achieved
with the number of threads equal to 64 or 128. GPU performance is very sensitive
to coalescence of the read and write operations performed for each thread-block.
For certain domain sizes, lack of coalescence can lead to a significant drop in the
number of MLPUS observed. The number of MLUPS observed for BGK shows
excellent agreement with other results published for BGK LBM on GPU 1. Results
for MRT LBM demonstrate that the MRT approach is competitive with BGK in
terms of MLUPS in spite of increased computations. This is consistent with the
observation that the LBM is primarily limited by memory bandwidth, such that
more computationally intensive methods may be accommodated easily.

Comparison of GPU and CPU implementations verify that GPU performance is
an order of magnitude faster for lattice sizes N ≥ 323, as shown in Fig. 3 (a) and

6



J. E. McClure, J. F. Prins and C. T. Miller

(a)

BGK (nthreads=128)

MRT (nthreads=128)

10 4 10 5 10 6

130

140

150

160

170

180

190

200

210

220

230

240

250

GPU Performance

N

M
L
U
P
S

(b)

BGK

MRT

10 3 10 4 10 5 10 6
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
CPU Performance

N

M
L
U
P
S

Figure 3: Performance for MRT and BGK schemes for (a) GPU (b) CPU

(b). On CPU, a significant performance dropoff is observed once the size of the
distribution arrays exceed the cache size. Due to the fixed overhead associated with
kernel execution, GPU is more advantageous for larger domain sizes, which favors
porous medium applications. For a dense lattice, the GPU implementation represents
a factor of nearly fifty times more MLUPS relative to the CPU. This performance
increase is attributed to the higher memory bandwidth of the GPU as well as the
fact that the GPU calculations are performed in float rather than double. Algorithm
differences impose slightly different memory demands for the two schemes.

MRT (N=100
3
)

MRT (N=80
3
)

MRT (N=64
3
)

BGK (N=100
3
)

BGK (N=64
3
)

BGK (N=80
3
)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

10
-3

2

2.5

3

3.5

4

4.5

5

5.5

Pemeability Estimation with LBM

τ

κ
/D

2

Figure 4: Dimensionless permeability estimates obtained via LBM for a range of relaxation param-
eters τ . The length scale D is the number of pixels per sphere radius.

The impact of method choice on permeability estimation was investigated using a
random sphere packing of 125 equally sized spheres in a cubic domain. The porosity
of the packing was 0.37642. Permeability results were obtained via LBM by dis-
cretizing the packing to obtain domains of size 643, 803 and 1003. The results are
shown in Fig. 4 for both BGK and MRT at each discretization level. Permeability
estimates demonstrate that the computational cost of the MRT scheme is more than

7



J. E. McClure, J. F. Prins and C. T. Miller

compensated for by the increased accuracy of the scheme. Results demonstrate that
larger domains must be considered to mitigate the strong viscosity dependence ob-
served for the BGK approach. The cost associated with simulation of larger domain
sizes far exceeds the increased computational expense per iteration associated with
MRT.

4 CONCLUSIONS

Implementation of BGK and MRT lattice Boltzmann schemes demonstrate the
advantages of the GPU; performance on GPU is fifty times faster than CPU. Ad-
ditional registers are required for the MRT scheme, but this does not inhibit its
application on GPU. As with CPU implementation, execution of the streaming step
is the primary performance bottleneck on GPU. Viscosity dependence of BGK per-
meability estimates implies that much larger domain sizes must be considered to
achieve reliable permeability estimates. MRT offers significant benefits even for the
current generation of GPUs, where register space is at a premium.

REFERENCES

[1] A. Kaufman, Z. Fan, K. Petkov, Implementing the lattice Boltzmann model on
commodity graphics hardware, JOURNAL OF STATISTICAL MECHANICS-
THEORY AND EXPERIMENTdoi:10.1088/1742-5468/2009/06/P06016.

[2] Z. Fan, F. Qiu, A. E. Kaufman, Zippy: A framework for computation and vi-
sualization on a GPU cluster, COMPUTER GRAPHICS FORUM 27 (2) (2008)
341–350.

[3] C. Pan, M. Hilpert, C. T. Miller, Pore-scale modeling of saturated permeabilities
in random sphere packings, Physical Review E 64 (6) (2001) 9.

[4] C. Pan, L.-S. Luo, C. T. Miller, An evaluation of lattice Boltzmann schemes for
porous medium flow simulation, Computers & Fluids 35 (8–9) (2006) 898–909.

[5] D. d’Humiéres, I. Ginzburg, M. Krafczyk, P. Lallemand, L. S. Luo, Multiple-
relaxation-time lattice Boltzmann models in three dimensions, Philosophical
Transactions of the Royal Society of London Series A-Mathematical Physical
and Engineering Sciences 360 (2002) 437–451.

[6] K. Mattila, J. Hyvaeluoma, J. Timonen, T. Rossi, Comparison of implementa-
tions of the lattice–Boltzmann method, Computers & Mathematics with Appli-
cations 55 (7) (2008) 1514–1524.

8


