
XVIII International Conference on Water Resources 
CMWR 2010 

J. Carrera (Ed) 
CIMNE, Barcelona 2010 

 

A DESCRIPTION OF LINEAR AND NONLINEAR SOLVER FAILURES 
AND CURES FOR UNSATURATED FLOW CALCULATIONS 

Fred T. Tracy* 
* Engineer Research and Development Center 

Information Technology Laboratory 
DoD Supercomputing Resource Center 

Vicksburg, MS USA 39180 
e-mail: Fred.T.Tracy@usace.army.mil 

 

Key words: Numerical methods, unsaturated flow, linear and nonlinear solvers 

Summary. This breakdown of the linear system of equations observed in a three-dimensional  
(3-D) parallel finite element solution of unsaturated flow using Newton's method is illustrated 
using the one-dimensional (1-D) solution of the Green-Ampt infiltration problem. Causes and 
cures are then described. 
 

1 INTRODUCTION 

A recent investigation of linear and nonlinear solvers for difficult unsaturated flow 
problems 1 revealed that a BiCG-Stabilized solver 2 for Newton's method sometimes failed. 
This was in the context of a 3-D Galerkin finite element method discretization, where only 
tetrahedral elements were used. It was first thought that this was due to a weakness in the 
linear solver, so different linear solver options were considered using the Portable, Extensible 
Toolkit for Scientific Computation (PETSc) 3 library, as has recently been done by Nguyen et 
al. 4. However, it was also observed that not only the 3-D solution failed, but also a two-
dimensional (2-D) finite difference version of the test problem using a direct banded linear 
solver also failed. This indicated that something more fundamental might be at work. The 
original problem was essentially a 3-D version of the Green-Ampt problem 5 where a dry soil 
sample has a head applied at the top of the sample, thus generating a downward moving front 
of water. When the 1-D Green-Ampt problem was then tested using the finite difference 
method, the direct tridiagonal linear system of equations did not fail; but unless remedies were 
applied, the nonlinear solution process failed. This document will describe the cause and 
different cures of the problem.  

 

2 PROBLEM DESCRIPTION 

The Green-Ampt infiltration problem is typically 1-D unsaturated flow in a vertical column 
of soil that is initially dry until ponding occurs at the top (often pressure head is zero). A front 
then proceeds downward as the soil becomes saturated (see Figure 1). Node 1 is at Lz  , and 
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the bottom node is at 0z . 
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Figure 1. Finite difference representation of the first three nodes of the Green-Ampt problem  
 

3 GOVERNING EQUATIONS 

The 1-D version of Richards' equation was used as follows: 
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where 
 
                zh           (2) 

 
and rk  is the relative hydraulic conductivity, sk  is the constant saturated hydraulic 

conductivity,   is the total head,   is the moisture content, h  is the pressure head, z  is the 
positive upward z  coordinate, and t  is the time. The initial conditions are that the soil is dry, 
so the pressure head is a constant negative value, dh  ( dhh   or zhd  ). The boundary 

conditions are 0h  ( L ) at Lz  , and dhh   at 0z . For simplicity, use Gardner's 

equation 6, 
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where   is a positive parameter. Also, use 
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where s  is the moisture content when the soil is saturated, and d  is the moisture content 

when the soil is dry. 
 

4 FINITE DIFFERENCE DISCRETIZATION FOR NODE 2 

The finite difference equation for node 2 is 
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Here, rk  and   are functions of h , making the discretization nonlinear. Two different ways 

of evaluating  hkr  will be described in detail below. Eq. 5 is rewritten as follows: 
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where n  is the time-step number, t  is the time increment,    1

2/11




n
r hk  is the relative 

hydraulic conductivity evaluated halfway between nodes 1 and 2 at time-step, 1n , and z  
is the constant distance between nodes. 

 

5 NEWTON LINEARIZATION FOR NODE 2 

The nonlinear equation, 
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is to be solved using Newton’s method. Thus, 
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where k  is the nonlinear iteration count number. For the first time-step and 0k , 

zLhd   0
2

0,1
2 , and zLhd  20

3
0,1

3  . 

 

6 LINEAR SYSTEM OF EQUATIONS 

In general, with, for example, 7N  nodes, L1  and dh7 , thus giving the 

following tridiagonal system of equations to solve: 
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Then φ   is updated by 
 
           10,1,1,11,1    knknkn φφφ       (10) 

 
where φ  is the vector of unknown total heads at the nodes, and   is a parameter resulting 
from a line search. 

 

7 RELATIVE HYDRAULIC CONDUCTIVITY CHOICES 

Two ways of computing relative hydraulic conductivity are considered. It is important to 
note here that this is not a comprehensive study of different ways to average relative hydraulic 
conductivity and the errors associated with each method as others have done 7. Rather, the 
focus of this work is to use the two selected methods of averaging to illustrate linear and 
nonlinear solver difficulties and fixes. That is, robustness, not accuracy, is the primary focus. 

7.1 Average pressure head at the midpoint 

The first choice is 
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Eq. 8 for the first nonlinear iteration for the first time-step becomes 
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Putting Eq. 3 in the above equation gives 
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Using cmL 50 , cmz 25.0 , hrt 1.0 , 12.0  cm , cmhd 50 , 45.0s , 

15.0d , and hrcmks /1.0 , the coefficient of 1,1
2  in Eq. 13 becomes 
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The main diagonal term for node 2 is indeed negative, and t  must be made substantially 
smaller to create a positive main diagonal term. This phenomenon is, in fact, the crucial cause 
of the failure of the linear solver and thus the nonlinear solver in the 1-D, 2-D, and 3-D cases. 
The resulting linear system often has an extremely high condition number because negative 
main diagonal terms near the front cause near-zero main diagonal terms a bit away from the 
front. 
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7.2 Average relative hydraulic conductivity at the midpoint 

The second choice is 
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Eq. 8 for the first nonlinear iteration for the first time-step now becomes 
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Putting Eq. 3 in the above equation as before gives 
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Using the same input data values as before, the main diagonal term for node 2 is 
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Here, the first term is much bigger, and the negative term is much smaller than the first option 

for rk . It is also important to note that if the 
dh

dkr  terms are not used ( rk  lagged to the 

previous nonlinear iteration (Picard iteration 8)), all the negative contributions to the main 
diagonal vanish. 
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8 COMPUTATIONAL RESULTS 

The finite difference solution was run with the two options for relative hydraulic 
conductivity using combinations of Picard and Newton iterations. The number of nonlinear 
iterations for the first time-step is presented in Table 1. Here, any Picard iterations are done 
first and then any Newton iterations are done after that. The linear system of equations was 
done by a direct solution without any pivoting. 
 

rk  Picard Newton Total

0 Not converged after 20,000 - 
5 Blew up after 4  
10 Blew up after 2  
20 58 78 
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71 0 71 
 

Table 1. Nonlinear iteration count for the first time-step 
 

9 CONCLUSIONS 

 For the Newton iteration, a negative contribution to the main diagonal of every 
internal node, m , exists in this problem because flow is downward. This negative 
value is because 01  mm   (nodes numbered consecutively from top to bottom) 

and 0
dh

dkr  (see the second term in Eqs. 15 and 19). 

 This negative contribution is largest near the front. 
 For option 1 (equivalent to a constant rk  inside each element when using the finite 

element method), when this negative term is big enough, the main diagonal term 
becomes negative, and the numerical solution breaks down. The use of a full direct 
linear solver with pivoting might help, but the more fundamental issue is the 
potentially ill-conditioned linear system of equations that are generated when negative 
diagonal terms exist. This can be remedied by decreasing t  or doing some Picard 
iterations before Newton iterations are done. 

 The most robust way to compute rk  is to average respective node values (option 2). 

This is equivalent in the finite element equations to having rk  vary linearly inside the 
element. This option does not usually need initial Picard iterations to get the solution 
close to the final result since the negative contribution is much smaller and therefore 
the main diagonal terms remain positive. 
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