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Summary. Assessment of the effects of uncertainty in model inputs on its output are now
widely recognized as important parts of analyses for complex systems. In this paper, we address
stochastic groundwater flow problems with random permeability fields. For this purpose, we
combine low order mixed finite element method space with polynomial chaos expansions. The
so-called Karhunen–Loève expansion is employed to efficiently generate the random fields. A
non-intrusive method based on probabilistic collocations is used to compute the polynomial
coefficients. The computational cost is reduced by preliminarily screening the input random
variables. The stochastic error analysis is investigated through numerical experiments.

1 Problem statement
Let D be a bounded domain in R

2 with boundary Γ. We define the probability space
(Ω,F ,P) where Ω is a space of events, F its σ-algebra and P its probability measure. Here
we consider stochastic groundwater flow problems with random permeability fields defined as
follows: Find stochastic functions u : D×Ω → R and v : D×Ω → R

2 such that almost surely,
the following set of equations holds:

v(x;ω) = −α(x;ω)∇u(x;ω) and ∇ · v(x;ω) = f(x) in D,
u(x;ω) = g(x) on Γ,

(1)

where u is the pressure, v the Darcy’ velocity and α the given stochastic permeability field.
Different approaches are available to tackle problem (1) that can be classified as either intru-

sive or non-intrusive. In the first approach, a set of equations is derived that directly accounts
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for the response uncertainty (e.g. its first moments) as unknowns of the problem. The advantage
is that the numerical solution of the stochastic problem can be computed with a few simulation
runs. Yet, the number of unknowns drastically increases with the complexity of the relationship
between the model response and the random inputs. Their intrusive feature greatly complicates
the formulation of the model equations even in the case of linear and stationary input distribu-
tions. The stochastic finite element methods 1;2 and moment-based equations3 are such intrusive
approaches. In the non-intrusive approach, the numerical model derived to solve the determinis-
tic problem is used as a black-box. The response uncertainty is assessed through several model
runs for different input sets. The price to pay in this case is the rather large number of model
runs required to accurately assess the output uncertainty 4.

Here, we solve the deterministic problem with the lowest-order Raviart–Thomas mixed finite
element methods. This choice is motivated by their local mass conservation and proper treat-
ment of discontinuous permeability tensor. In order to improve the efficiency of non-intrusive
methods, we focus on the probabilistic collocation method suggested in a recent article 5 in con-
junction with polynomial chaos (PC) expansions. Given that the computational cost increases
drastically with the number of random variables, we propose to preliminarily reduce the input
random variables after analyzing the sensitivity indices of the eigenmodes. Then, the stochas-
tic fields (pressure and variance) are accurately estimated with the few relevant eigenmodes.
Numerical tests are proposed to assess the performance of the proposed approach.

2 Input uncertainty modelling
In this section, we address the problem of propagating the input uncertainty through the

model (Eq. 1). This is efficiently achieved with the Karhunen–Loève (KL) expansion that led
Ghanem & Spanos to develop their spectral approach1. We denote by κM(x;ω) = log(α(x;ω))
the approximated log-permeability field. We assume that the log-permeability field is gaussian
and characterized by a mean κ̄(x) and a covariance kernel Cκ(x, x

′), bounded, symmetric and
positive definite. The truncated KL expansion writes,

κM(x;ω) = κ̄(x) +
M∑
i=1

√
λiξi(ω)ϕi(x), (2)

where λi and ϕi(x) are called eigenvalues and eigenfunctions ofCκ(x, x
′) respectively. This de-

composition is optimal in the sense that the mean square error, integrated over D, is minimized.
The deterministic eigenfunctions are orthogonal. ξ = (ξ1, . . . , ξM)T is a set of independent
standard normal random variables. In our applications, we retain the first M eigenmodes that
contain at least 95% of the variance. Eigenvalues and eigenfunctions of Cκ(x, x

′) are solution
of the following Fredholm equation:∫

D
Ck(x, x

′)ϕi(x
′)dx′ = λiϕi(x). (3)

Computational issue for numerically solving Eq. (3) is adressed in Schwab & Todor (2006)6.
Once the eigenpairs determined, to propagate the random field uncertainty through the model,
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one needs to generate M independent standard normal random variables (i.e. the ξi’s in Eq. 2).
This can be achieved with Monte Carlo (or Quasi Monte Carlo) samples or specific collocation
points.

3 Output uncertainty and sensitivity analyses
Response surface methodologies are suited for output uncertainty representation. They con-

sists in building an approximate of the model response called response surface 7, metamodel or
emulator8. Generalized polynomial chaos expansions are such particular response surfaces.

Let F (ξ) be a square integrable function of M independently and normally distributed ran-
dom variables. Then, it can be spanned onto the Hermite PC as follows,

F (ξ) =
∑

k∈NM

Fkψk(ξ), (4)

where {ψk} denotes a Hilbertian basis of L2(Ω,F ,P) defined by the so called Hermite PC. The
deterministic PC coefficients {Fk} are to be computed. Their knowledge provides a complete
characterization of the uncertainty of F . In practice, the PC expansion is truncated to a given
polynomial degree (say P ). The total number of PC coefficients (N + 1) increases drastically
with the dimension of the model:

N + 1 =
(M + P )!

M !P !
. (5)

Different computational methods are proposed in the literature to efficiently compute the PC
coefficients. In particular, the collocation method proposed in a recent paper 5 requires a number
of model runs of the same order than (N + 1). The latter is employed in the present work.

In the cited article, the author noticed that PC expansion is equivalent to Sobol’ ANOVA-
decomposition9 and proposed to use PC expansions to compute the variance-based sensitivity
indices. The computation is straightforward once computed the PC coefficients (the interested
readers are referred to5 for more details on the calculaton). In the present work, we investigate
the total sensitivity indices defined by,

STi
=
E(V (F (ξ)ξ−i

))

V (F (ξ))
, (6)

where E(·) is the mathematical expectation, V (·) the variance, V (··) is the conditional variance
and ξ−i

= {ξ1, . . . , ξi−1, ξi+1, . . . , ξM}. STi
measures the total contribution of ξi to the variance

of F (ξ) including its marginal as well as its cooperative contributions with the other inputs.
Hence, if STi

� 0 then ξi can be deemed as a non important input and its value can be arbi-
trarily fixed within its uncertainty range without modifying F (ξ). In this work, we propose to
further reduce the number of eigenmodes M in the KL expansion (Eq. 2) by retaining only the
most important ones. By so doing, we also reduce the number of PC coefficients (Eq. 5) and
consequently the computatonal cost when probabilistic collocation is used.

3
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4 Optimal probabilistic collocation
Probabilistic collocation is a method to propagate input uncertainty through the model. Con-

trarily to Monte Carlo simulations, it only relies on specific design points {ξ j} in the input
space. The number of pointsNs should at least equal the number of coefficients in the truncated
PCE (i.e. (N+1) see Eq. 5). If a P-th order PC is investigated, the collocation points are chosen
as combination of the roots of the polynomial of order (P + 1). In the aforementioned article 5,
it is proposed to select the combinations the closest to the origin, so that the rank of the Fisher
matrix (ΨT Ψ)−1 equals (N + 1). Then, the PC coefficients are obtained by regression,

F̃ = (ΨT Ψ)−1ΨTY , (7)

where (Y )|i = F (ξi) and (Ψ)|ij = ψ
j
(ξi) with i = 1, . . . , Ns and j = 0, . . . , P , F̃ is the

vector of estimated PC coefficients. The determination of the optimal design points may be
time consuming but is independent of the model of interest F and Ns � N + 1. Consequently,
the experimental design is derived once for all and could serve for the analysis of other models.

5 Numerical experiments
The deterministic problem is solved with the mixed hybrid finite elements (MHFE) method

by using the lowest-order Raviart–Thomas (RT0) space10. Let D be the unit square [0, 1]2

and we denote by Th a partition of D into triangles. In our experiments, a fixed mesh is em-
ployed which is composed of 22190 triangles. The boundary conditions are defined as follows:
g(0, y) = 1 and g(1, y) = 0 with no-flow elsewhere. The source term is null in the physical
domain. A preconditioned conjugate gradient iterative solver with the Eisenstat 11 procedure
is used for the resolution of the sparse linear system. The error is computed in the discrete
L2-norm ,

‖u‖0 =

[ ∑
A∈Th

|A|u(xA)2

]1/2

, (8)

where xA is the center of A and |A| its measure.
We choose the covariance kernel so that only a few eigenmodes are preponderant (M = 4).

For this purpose, we assume Gaussian random log-permeability fields characterized by a mean,
κ̄(x) = 0 and a covariance function of the form Cκ(x, x

′) = exp(−|x− x′|/10).
The algorithm to perform the uncertainty and sensitivity analyses is as follows,

• Compute and select the M first eigenvalues and eigenfunctions of Cκ(x, x
′) : λi and

ϕi(x), i = 1, . . . ,M ,

• Choose the PC order P and generate a sample of size Ns of M independent standard
normal random variables (the ξ i’s) with the probabilistic collocation design,

• For each collocation point, compute κM(x, x′) the log-permeability field with Karhunen-
Loève expansion (Eq. 2) and deduce the permeability field α(x;ω) = exp(κM (x;ω)),
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• For each permeability field so generated, perform the simulation run by solving the de-
terministic PDE associated (Eq. 1) and save the outcomes of interest,

• Once the simulation runs achieved, for each mesh and for each outcome, compute the PC
coefficients and deduce the expected and variance fields of the outcomes as well as the
total sensitivity fields of each random variable {ξ1, . . . , ξM}.

Order Coll. points Pressure error Velocity error
P N Mean Variance Mean Variance
2 81 1.88E-07 9.13E-07 1.01E-02 1.03E-00
4 625 4.08E-09 3.41E-08 1.60E-03 8.22E-02
6 2401 1.29E-09 5.15E-09 8.00E-04 1.24E-02

Table 1: Stochastic convergence results in the discrete L2-norm for the full collocation (FC).

Order Coll. points Pressure error Velocity error
P N Mean Variance Mean Variance
2 15 1.88E-07 1.19E-06 1.04E-02 1.19E-00
4 70 1.72E-09 4.52E-09 3.00E-04 1.09E-01
6 210 6.91E-10 1.59E-09 1.00E-04 5.40E-03

Table 2: Stochastic convergence results in the discrete L2-norm for the optimal collocation (OC).

5.1 Assessment of the stochastic convergence

In the first numerical experiment, we compare the output uncertainties obtained with two
PCE expansions computed with a full tensor product grid of probabilistic collocation points
(the computational cost is Ns = (P + 1)M ) and the probabilistic collocation method of Sudret 5

(Ns � (P+M)!
P !M !

). In the sequel, the first collocation technique is referred to as the full collocation
(FC) while the second one is referred to as the optimal collocation (OC). We focus on the ability
of OC to provide accurate estimates of the two first moments (mean and variance) as compared
to FC. For this purpose, we perform different computational experiments to estimate PCE’s of
increasing order with the two methods. Because, with the regression-based approach (Eq. 7),
the errors decrease monotonically for even and odd P respectively, we only investigate even PC
order (P = 2, 4, 6, 8). We study the stochastic convergence of the two PCE’s estimates toward
the results of the 8-th order PC computed with FC.

Inspection of the stochastic fields obtained with the 8-th order PC estimated with FC (N =
6561) has shown that: (i) the pressure variance is largest in a vertical strip in the middle of the
domain, away from the Dirichlet boundary edges (see Figure 1), (ii) the velocity variance is
smallest along the Neumann edges and is affected by the direction of the flow. For this reason,
we exclude the vertical component velocity in the analysis of convergence.

5
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The stochastic errors are reported in Tables 1 & 2. We can note the exponential conver-
gence as confirmed by other authors12;4. The results with OC are particularly accurate as regard
to the computational cost. A 6-th order PCE seems sufficient to properly capture the output
uncertainty. So, for the sensitivity analysis, we consider the 6-th order PC computed with OC.

5.2 The most relevant eigenmodes

We compute the sensitivity maps of each eigenmode for each outcome. As aforementioned
in § 3, their computation is straightforward once estimated the PC coefficients. For the pres-
sure and velocitiy fields, we investigate the eigenmodes that mainly contribute to the variance.
For this purpose, we set that an eigenmode is important if its total sensitivity indices over the
domain is greater than 5%. We find that for the pressure only mode 3 is relevant and for the
velocity modes 1 and 2. This means that, the stochastic outcomes can be characterized by a 6-th
order PCE with 2 random variables. This leads to a collocation design of sizeNs � (2+6)!

2!6!
= 28

(actually 31). As a comparison, Figure 1 depict the stochastic fields of the 6-th order PC com-
puted with the four eigenmodes (Ns = 210) and three eigenmodes (Ns = 31). As expected, the
results are very close.

5.3 Discussion

The numerical experiments show that the eigenmodes that mainly contribute to the variance
of the pressure field differ from those that drive the velocity variance. This is explained by the
fact that streamlines and isopressure curves are orthogonal as well as the eigenfunctions. Con-
sequently, one can use global sensitivity analysis to point out the most relevant eigenmodes for
each outcome. This allows to reduce the stochastic dimension of the problem and consequently
the computational cost. In the case of covariance function that implies much more eigenmodes
in the Karhunen-Loève expansion it is recommended to first investigate a second-order PCE in
order to detect the most relevant eigenmodes. Then, with the few important eigenmodes, one
can investigate higher-order PCE that should provide more accurate stochastic fields.
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Figure 1: Expected and variance of the pressure and velocity fields computed with a PCE of order P = 6 and
dimension M = 4 (left) and a PCE with P = 6 and M = 2 (right). The latter is built with the most relevant
eigenmodes. 7
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