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Summary. We present a model of reduced complexity for assessing the probabilistic risk of 
groundwater pollution from a contaminant spill at a waste storage site.  The model is based on 
a logical decomposition of sources, flow, geochemistry, biology, aquifer contamination and 
so on into basic events.  The influence of basic events on each other is reduced to subsets of 
events that are conditionally independent.  The conditional probabilities can be obtained 
subjectively from experts or from physical data.  We compute the subjective probability of 
aquifer contamination from various combinations of events for a simple example. 

 
1 INTRODUCTION 

Consider the threat that a chemical spilled at a waste storage site may pose to a nearby 
drinking water aquifer.  Predicting the fate and transport of such a contaminant has a strong 
physical foundation (e.g., Darcy’s Law, Fick’s Law of Diffusion, reactive geochemistry) that 
in principle would allow exact prediction if complete information about the given 
hydrogeologic system were available.  Since complete information is never available, 
uncertainty about flow and transport parameters always exists, and its effects must be 
quantified, usually probabilistically.   The physical basis for contaminant transport suggests 
representing system performance through stochastic partial differential equations formally 
corresponding to the relevant physical laws, but with parameters (including initial and 
boundary conditions) that are random variables or random fields.  In that case, the “solution” 
is either the moments of system state variables related to those of system parameters or 
approximate probability densities for system states.  An extensive literature drawing on the 
theory of stochastic partial differential equations exists for such applications1,2.   In this paper 
we discuss an alternative approach based on models of reduced complexity arising from the 
field of probabilistic risk assessment3, and we use it to predict the likelihood of aquifer 
contamination from a single point failure at a waste site. 
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The probabilistic risk assessment (PRA) approach to predicting contaminant transport is 
motivated by the relative insensitivity to model complexity observed in some predictions of 
subsurface flow and transport.  Although it seems intuitively reasonable that detailed 
stochastic models based on extensive data about distributions of system parameters should 
increase confidence in predictions, in some cases detailed models may not improve over 
predictions obtained from simple models4.   In many cases conclusions drawn from simple 
models are about as reliable as those based on detailed physical  models5.   The relative 
insensitivity of predictions to model complexity in some cases has led to interest in simple 
probabilistic models based on a few measurements which are relatively easy to make and/or 
can be based on the subjective opinions of experts6,7,8.   

Rather than rely on explicit system dynamics, a model of reduced complexity, µ, 
represents failure of a hydrogeologic containment system as the result of interactions among 
coarsened system states corresponding to statements like “engineered remediation fails,” 
“natural attenuation is ineffective,” and so on.  As such, µ is usually expressed in terms of 
system failure, usually aquifer contamination, represented as a (Boolean) logical combination 
of the basic events.   The joint probability of the logical combination of events is expressed as 
independent constituent probabilities via probabilistic conditioning based on physical 
properties, engineering principles, and expert judgement.  Industrial applications of PRA 
generally employ extensive databases derived from engineering reliability studies of the 
performance of mechanical, electrical, and chemical components3.  No such databases are 
usually available for evaluating the performance of environmental containment systems that 
are primarily natural and whose engineered components, e.g., remediation barriers, are unique 
from application to application.  Hence, the individual constituent probabilities of 
environmental PRA must usually be based on natural theory, observed data, experiment 
and/or expert judgement.   Bolster et al.8 gives an especially clear derivation of probabilities 
of basic events from hydrgeologic data and theory. 

The application of PRA to hydrogeologic systems is at an early stage of model 
development where different approaches to system representation and prediction are still 
being explored.  Verification and validation studies await the development of a mature 
approach to the entire cycle of model definition from identification of basic events and model 
structure to the definition and evaluation of constituent probabilities based on observations, 
experiments, and expertise.  In this paper we develop a model of aquifer contamination using 
the Boolean approach pioneered by Tartakovsky6 and taken by Bolster et al.8.  The example is 
important in its own right: a site where the risk of aquifer contamination from a waste spill is 
combated with a combination of engineered remediation and natural attenuation.  The method 
is based on constructing a fault tree corresponding to system failure3.  Time does not enter 
explicitly into the analysis as it does in the finite-state machine approach taken by Winter and 
Tartakovsky6.  Despite this limitation, fault tree decompositions provide a simple expression 
of system structure and are an obvious starting point for the development of joint 
probabilities.  There seem to be no obstacles to combing fault tree analyses with models that 
explicitly include time, but we are unaware of anyone doing that.  Instead we define a 
containment system in Section 2 that is the same as the one examined by Tartakovsky6, 
propose a new logic for it in Section 3 that we contrast with Tartakovsky6, and develop a 
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corresponding conditional probability model in Section 4.   In Section 5 we apply the 
probability model using the same set of component probabilities as Tartakovsky6 and contrast 
our results with his.  We offer some concluding remarks in Section 6. 

 
2 EXAMPLE SYSTEM 

Suppose contamination of a drinking water aquifer (reservoir) depends on (i) a 
contaminant spill occurring at an associated waste storage site, (ii) the failure of efforts to 
remediate contamination through engineering, and (iii) the inability of natural attenuation to 
reduce concentration before the contaminant reaches the drinking water reservoir.  The system 
fails at given time T if contaminant concentration exceeds a level in the reservoir that is 
mandated by a regulatory authority like the US Environmental Protection Agency.  It is 
implicit that the volume encompassed by engineered remediation is outside the reservoir, that 
engineered remediation succeeds if peak concentration is lower than the regulatory threshold 
when the plume reaches the reservoir, and that natural attenuation fails if the concentration in 
the reservoir exceeds the threshold before T.   Beyond that, estimates of of system failure (C = 
true) depend on the specific logical form of its hypothesized relations to the occurrence of a 
spill (S = true), remediation failure (R = true), and ineffective natural attenuation (N = true), 
and also on the potential existence of preferential flow paths (F = true) that may carry high 
concentrations of a contaminant past engineered and natural barriers.  From here on we 
simply write, e.g., C for C = true and C′ for C = false, the prime indicating negation (NOT) 
for logical events.  Following Tartakovsky6, we address the effect of preferential paths after 
first examining the logical representation of the contaminant system. 

 
3 CONTAMINANT SYSTEM LOGIC 

PRA frequently uses Boolean logic to structure relations among elements of a system3.  
The logical structure proposed in Tartakovsky6 for the example system is, 

 

µ1: C = S(R + N) = SR + SN 
   
where addition indicates logical OR, juxtaposition corresponds to AND, and S, R, and N are 
basic events3.  According to µ1 the example aquifer is contaminated (C) if a spill occurs (S) 
and either engineered remediation fails (R) or natural attenuation is ineffective (N), but not 
necessarily both.  This is equivalent to contamination occurring if either a spill occurs and 
remediation fails (SR) or a spill occurs and natural attenuation is ineffective (SN).  Note that 
µ1 can produce seeming contradictions since (i) a spill (S) and ineffective natural attenuation 
(N) can result in aquifer contamination despite a successful remediation effort (R).  Similarly, 
(ii) a spill and failed remediation (R) can result in a contaminated aquifer even if natural 
attenuation is effective (N′). 

Bolster et al.8 offers a different perspective on the logic of this general problem by 
examining a case in which remediation depends specifically on a reactive barrier and also on 
natural attenuation.  They point out that such a barrier may be improperly placed so that 
contaminant transport bypasses the barrier completely and any chance of remediation rests 



G. Nearing, D. Tartakovsky, C. Winter 

 4 

solely on the shoulders of natural attenuation.  This might, at first glance, suggest that failure 
of natural attenuation (N) suffices for a spill to contaminate an aquifer (C) without regard to 
engineered barriers.  In fact, however, failure of the barrier (R) is implied in this case because 
the required contaminant reduction cannot be achieved through engineering efforts (due to a 
misplaced barrier), hence engineered remediation fails (R) with probability 1 in the Bolster et 
al.8 case.   

Further, if this arguably intuitive definition of a successful mitigation effort is accepted, as 
it is in Bolster et al.8, aquifer contamination is only certain if all three basic events occur 
together, implying the alternative logic that we propose, 

 

µ2:  C = SRN. 
 

In this model contamination is certain to occur if a spill occurs, engineered remediation fails, 
and natural attenuation is also ineffective.  We will contrast µ1 and µ2 throughout the 
remainder of this paper, but it is clear at this point that µ2 is not subject to the contradictions 
identified above.   

Properties of the models can be further clarified by considering sets of basic events that 
guarantee the aquifer will not be contaminated (C′).  µ1 asserts that the aquifer will not be 
contaminated, 

C′ = S′ + R′ N′ (1) 
 

if a spill does not occur (S′) or both remediation and natural attenuation succeed (R′ N′).  
While it is true that the system will not fail if both remediation and natural attenuation work, 
this seems overly restrictive since the system will also not fail if either engineered 
remediation or natural attenuation is effective by itself (R′ OR N′).  The logic of µ2 reflects 
this situation exactly, since  
 C′ = S′ + R′ + N′.  (2) 

In this case the aquifer is not contaminated if a spill does not occur (S′), or engineered 
remediation succeeds (R′), or natural attenuation is effective (N′).  Again, success is assumed 
to mean that the given process is effective in reducing contaminate levels to below the level 
which defines a contaminated reservoir. 
 
4 PROBABILITY MODEL 

Models like µ1 and µ2 are used in PRA to structure the probabilities of events like aquifer 
contamination.  To simplify the probability analysis, Tartakovsky6 assumes that a spill has 
occurred, so P[S] = 1, in which case the probability of contamination corresponding to µ1 
amounts to 

P1[C] = P[R + N] = P[R] + P[N] – P[RN] (3) 
and for µ2 

 P2[C] = P[RN].  (4) 
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Tartakovsky6 also allows for the possibility that preferential flow paths may exist (F) or 
not (F′). Using the definition of conditional probability 

 P[RN] = P[RNF] + P[RNF′] = P[RN|F] P[F] + P[RN| F′] P[F′],  (5) 
since P[F] + P[F′] = 1. 

A couple of simplifying assumptions can be justified at this point based on the 
hydrogeology:   
When F = True.  First, the existence of a preferential flow path couples the joint failures of 
remediation and natural attenuation, 
 P[RN|F] = P[R|NF] P[N|F] = P[N|F],  (6) 
that is, the occurrence of NF suffices through conditioning to assure remediation will fail to 
occur, so P[R|NF] = 1.  The reasoning is the same as discussed earlier with regard to Bolster 
et al.8 
When F = False.  When a preferential path does not exist, it can be assumed that R and N are 
independent, 

P[RN|F′] = P[R|F′] P[N|F′]. (7) 
Based on (6) and (7), equation (4) becomes 

P[RN] = P[N|F] P[F] + P[R|F′] P[N|F′] P[F′]. (8) 
Note that this is the form of µ2 (Eq 4) in this setting, while (Eq 3) for µ1 is 

P1[C] = P[R] + P[N] – (P[N|F] P[F] + P[R|F′] P[N|F′] P[F′]). (9) 

  
5 EXAMPLE  

With (3) and (8) in hand Tartakovsky6 considers a case in which P[F] ≈ 0.  When P[F] is 
small, it is assumed P[R] ≈ P[R|F′]  and P[N] ≈ P[N|F′].  To make the example concrete, the 
paper supposes P[F] = 0.01, P[R] = 0.1, P[N] = 0.5, and P[N|F] = P[R|F] = 1. in that case 
P1[C] ≈ 0.54 according to µ1, which it should be noted, is larger than the probability of either 
basic event.  For instance, the model concludes that the combined mitigation effects of R and 
N are worse than just applying R (or N) alone. Such a degree of negative synergy seems 
unlikely in a system where preferential paths effectively do not occur and a contaminant must 
navigate both the engineered system and the natural system to reach the aquifer.  The 
corresponding result using µ2 is P2[C] ≈ 0.06, which is reasonable in such a system. 

Next, consider the opposite case where P[F] ≈ 1.  Based on the reasoning of Tartakovsky6, 
this is a case in which aquifer contamination should be very likely to occur due to the almost 
certain presence of a preferential path.  This is a strong test of multiplicative models like µ2 
where a small value in any constituent can lead to an estimate of probability of contamination 
<< 1.  Yet in this case µ2 leads to P2[C] = P[RN] ≈ 1 because i) it can still be assumed that 
P[N|F] = 1, i.e., it is certain that a contaminant will escape natural attenuation if it migrates on 
a preferential path (similarly, P[R|F] = 1) and ii) P[F] ≈ 1.  Hence, under model µ2, P2[C] ≈ 1, 



G. Nearing, D. Tartakovsky, C. Winter 

 6 

as it should.  In this case µ1 also leads to the appropriate conclusion because P[N] = P[N|F] 
P[F] + P[N|F′] P[F′] ≈ 1 (similarly P[R] ≈ 1) so P1[C]  = P[N] + P[R] – P[RN] ≈ 1 + 1 - 1 ≈ 1.   

 
6 CONCLUSIONS 

We provide a straightforward model (µ2) for calculating the risk that a contaminant spill 
from a waste storage site will foul an associated drinking water aquifer.  As a practical 
alternative to the specific model (µ1) proposed by Tartakovsky6

,
 it strengthens the general 

approach to hydrogeologic PRA taken in that paper by allowing contamination (C) only if a 
waste spill occurs, engineered remediation fails (R), and natural attenuation proves ineffective 
(N).  This conforms to the logic of the storage system analyzed and to intuition.  It is born out 
by example calculations of the probability of aquifer contamination.  In particular, µ1 yields 
P1[C]  >> P[R] (similarly, P1[C]  > P[N]) for systems without preferential flow paths, i.e., the 
probability of system failure is amplified in µ1 so that it is greater than the probability that 
either of its constituent elements fails.  Our alternative yields P2[C] << 1 in this case, which is 
consistent with the constituent probabilities and the underlying logic of the example. 
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