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Summary. In this paper, we compare predictions of several pore-scale codes for single- and 
two-phase flow for the first time. Firstly, two implementations of lattice-Boltzmann method 
(LBM) and a finite-difference based code (FDDA) predict single-phase flow in Fontainebleau 
sandstone and dolomite samples. We then obtain pore-scale drainage for two fluid phase 
configurations using a novel level set method based progressive quasi-static (LSMPQS) 
algorithm for capillarity dominated flow. The resulting fluid configurations are used to 
compute relative permeability using LBM in each phase as well as formation factor. We 
demonstrate that the numerical methods compare well with each other and available 
experimental results. 
 
1 INTRODUCTION 

High-resolution, three-dimensional, X-ray microtomography images of multiphase porous 
media have become widely available over the past decade [1,2]. At the same time, several 
methods have been developed to both analyze the imaged pore space and calculate 
macroscopic flow properties [3-6]. Absolute and relative permeability are regarded as the 
most fundamental pore-scale properties [7] since they are inputs to large-scale reservoir 
simulations and are the basis for any modeling/prediction of more complex/coupled 
phenomena. The objective of this paper is to validate methods to calculate image-based 
permeability. 
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When modeling flow in porous media with the objective of estimating macroscopic flow 
properties such as permeability, one has a choice of network modeling or direct simulation in 
the imaged pore space. Network modeling (for an overview see [8,9]) requires non-trivial 
processing of the imaged pore space [10-13]  to derive a representative network of 
geometrically simplified pores (openings) and throats (constrictions). In this paper, we focus 
on direct methods. Lattice Boltzmann method [14] (LBM) is by now a well-established 
method for permeability estimations. Two-phase lattice Boltzmann implementations in porous 
materials are reported by a number of research groups [15,16], however they require intensive 
parallel computational resources. 

Understanding the relative permeability (flow conductivity to a phase in the presence of 
others) is crucial in describing flow in most subsurface systems. Relative permeability, 
however, is very sensitive to fluid configurations in space (as opposed to depending on the 
saturation only). Since two-phase Navier Stokes simulations in porous media are 
computationally demanding, a number of methods have sought to circumvent them [17].  In 
either drainage or imbibition, fluid-fluid interface geometry (that ultimately determines fluid 
configurations) is dominated by capillary forces (interfacial tension) on the length scales 
smaller than millimeter and the influences of viscosity and gravity can be neglected. The 
complex pore space geometry together with capillary forces leads to a multitude of history 
dependent possibilities, including disconnections of either wetting or non-wetting phases. 
Methods such as invasion percolation [18] or maximal inscribed spheres [19] use inscribed 
radius information at each point of the pore space in order to obtain fluid configurations. They 
are fast and reasonably accurate methods for drainage fluid configurations by inherently 
assuming simplified spherical interfaces. We have recently developed a quasi-static drainage 
and imbibition fluid configurations based on the level set method [20]. This algorithm also 
works in the imaged pore space of arbitrary complexity, but makes no assumptions on the 
shape of the interface, i.e. finds correct capillarity-dominated interfaces. In terms of 
computational complexity, it is not as fast as invasion percolation methods but is faster than 
two-phase LBM methods. 

Theoretical convergence estimates and validation of numerical approaches for Navier-
Stokes flow to date remain impractical to model natural porous formations. We first compare 
lattice-Boltzmann and finite-difference based codes for simulation of single-phase flow in 
realistic samples independently developed by our respective research groups. Then, we 
estimate relative permeability using single-phase flow simulators in each of the fluid phases. 
Even though the estimated two-phase relative permeability does not explicitly incorporate 
inter-phase exchange of momentum, its computational complexity is within our current 
computational capacity in contrast with complexities of explicit two-phase flow simulations. 
Silin and Patzek [17] have similarly utilized drainage fluid configurations obtained from 
maximal inscribed spheres method. We further use the fluid configurations to compute the 
water phase conductivity (formation factor). The combination of experimental validation and 
cross-validation of different numerical approaches for estimation of properties is an important 
step toward more reliable modeling. 
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2 METHODS 

2.1. Single phase permeability 
  
Lattice Boltzmann method. The fluid flow in porous media can be calculated in steady-state 
condition, for an incompressible, Newtonian fluid in the limit of low Reynolds number 
(creeping flow) using Lattice-Boltzmann method (D3Q19 lattice). We solve the Stokes’ and 
the mass conservation equations in the interstitial space of porous media 

 and (1) 

, (2) 

where µ is the viscosity, P the pressure and u is the local velocity. The corresponding 
permeability is calculated by comparing flow flux with Darcy’s law.  We enforce no-slip and 
no-penetration boundary conditions at the pore-grain surfaces. We compare two different 
implementations: (1) UT Austin’s Pore-Level Petrophysics Toolbox (PLPT) 1.00 [21], with 
LBM details described in [22,23] with relaxation parameter τ=0.65. This implementation we 
refer to as LBM/PLPT. (2) MPI parallel implementation (which we refer to as LBM/MPI) 
[24,25] with relaxation parameter τ=1 and a second-order accurate mid-point style reflection 
rule for internal boundaries. LBM/PLPT sets inlet and outlet pressures, while LBM/MPI 
considers two macroscopic boundary conditions: mirroring of the structure in flow direction 
with periodic boundaries perpendicular to flow, and periodic boundary conditions with a free 
fluid padding layer of 15 voxel effectively making the sample periodic. No body force is 
applied outside the measuring window (the fluid pad). 
 
Finite-difference diffusive-advective method (FDDA). We assume creeping flow in a 
porous medium and neglect compressibility in the small samples under investigation. Fluid 
flow consists of diffusive and advective parts and is solved via finite-difference method  
[26,27]. The advective flow applies the proper slip or no-slip boundary condition depending 
on throat sizes. The summation of these contributions to the flow results in 

, 
 
 (3) 

 

where J is mass flux, r is the tube radius, R is the universal gas constant, T is temperature, M 
is the molar mass, ρavg is the average density at pavg[=(P1+P2)/2], µ is the viscosity, P1 and P2 
are pressures at the inlet and outlet of the tube, respectively, and L in the length of the tube. 
Coefficient F stands for the contribution of slip flow on a solid matrix surface. In this paper, 
the coefficient F is approximately equal to 1 since the grid sizes are in the micrometer range 
(i.e. the slip flow is not significant). If the contribution of the diffusive term is also neglected, 
Eq. (1) reduces to the Hagen–Poiseuille’s equation. We impose pressure boundary conditions 
on inlet/outlet and no-penetration at the grain boundaries. We solve the resulted generalized 
Laplace equation in the form of 
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, (4) 

where d is a weight factor calculated for each voxel according to its position in the pore space. 
This results in pressure and subsequently fluid velocities in the interstitial space. The 
permeability is again calculated by comparison to Darcy’s law. 

 
2.2. Two-phase fluid configurations: Level Set Method Progressive Quasistatic 
Algorithm (LSMPQS)  

 
We obtain detailed pore level interface description at different saturations in arbitrary 

geometries for either a drainage or imbibition process. (see [20,28] and references therein). 
Numerical results are extensions of the publicly available code [29]. A short summary of the 
approach is as follows. The moving surface of interest is embedded as the zero level set of 
function  defined on entire domain and  is a time-like parameter that tracks the 
motion of the interface toward an equilibrium position. The zero level set is the set of points  
such that . Such representation enables elegant calculation of various interface 
properties. For instance, the normal to the interface is simply , where 

 is the spatial gradient of , and (twice the) mean curvature  is divergence 
of the normal. In level set methods, the level set function evolves in time according to the 
following partial differential equation: 

, (5) 

where F is the speed of the interface in normal direction. More general equation is 
, (6) 

where  is external velocity field (if , we will obtain previous equation). In 
the most general two phase flow application, one would propagate the fluid-fluid interface 
using velocity field  obtained by solving the Navier-Stokes equation. If capillarity is the 
dominant force, however, the interface at equilibrium will curve itself while balancing 
capillary pressure and interfacial tension (Young-Laplace equation ). Thus the 
appropriate normal speed model at the core of slow, quasi-static interface movement is 

. (7) 

We model the situation where the wetting fluid is perfectly wetting the solid surface (contact 
angle zero). This is effectively done describing the solid phase with a separate level set 
function and implementing a simple penalization if the meniscus enters the solid phase. 

 
2.3. Water phase conductivity calculations 
 
FD and FEM implementations. Conductivity is calculated by solving the generalized 
Laplace equation by either a finite difference method using an average of parallel and serial 
local conductivities to turn the voxel image into a network of resistors or a finite element 
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method (FEM) using parallel conductivity rules only [30]. The latter typically leads to 
smoother convergence. We will present comparisons with a random-walk implementation 
[23] in future. 

3 RESULTS 

We use a Fontainebleau sandstone, and a sucrosic dolomite 5003 images with voxel length of 
3.5 µm. Details on the samples are available in [31]. Figure 1 shows porosity variation for the 
subsamples used in this paper. Subsamples with 250 voxels on side show reasonable 
uniformity with respect to porosity and are considered practically representative of the larger 
image.  

  
Figure 1: Porosity variation for subsamples of 5003 Fontainebleau sandstone and dolomite images.  

 
Single phase permeability. The results from the different methods indicate errors within 
20% range in all cases under investigation (Figure 2). The modeling results are in agreement 
with the experimental values on larger, sister samples of the imaged ones, K=3 D for 
Fontainebleau sandstone and K=0.9 D in dolomite [31]. 

We observe that FDDA has an advantage over LBM in low resolution images. Tortuous 
paths with tight connections and unfavorable orientation compared with the global pressure 
gradient (implemented as a body force) might yield zero permeability in LBM while the 
actual permeability is small but finite. In contrast, FDDA checks all possible connections 
from the inlet to the outlet [26].  

 
Drainage fluid configurations, relative permeability and conductivity.  Figure 3 shows 
two cases for drainage in Fontainebleau and dolomite 2503 samples. In part (a) non-wetting 
(NW) phase in Fontainebleau at the drainage step where the NW phase percolated to the 
opposite side  and in part (b) trapped residual wetting (W) phase in dolomite are shown. Main 
advantage of using LSMPQS is easy handling of trapped phases. While we show only W 
phase trapping at drainage (Figure 3b), NW phase trapping at imbibition is also handled in 
this method [32], and to our knowledge LSMPQS is the only method to successfully match 
experimentally observed NW phase trapping.  We will report on detailed trapping comparison 
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and the imbibition results in the future. Figure 4a shows curvature (equivalent to capillary 
pressure) saturation relationships. Non-smooth dolomite drainage curve indicates that a larger 
sample should be used for a better representation. We will address this issue in the future. 
Residual water phase saturation is much higher in dolomite than in the sandstone. The relative 
permeability computed from corresponding fluid configurations with different methods match 
well (Figure 4b). Conductivity of the samples is computed using FD/FEM implementation. 
We observe formation factor of 13.2 in Fontainebleau and 37.5 in dolomite 2503 samples. 

 
    (a)       (b) 

Figure 2: Comparison between the absolute permeability results of a) FDDA and LBM/PLPT for the 1253 
images of Fontainebleau sandstone, and b) Two respective LBM implementations. The green dashed line shows 

the perfect match line and the dotted black lines are 20% relative error lines. 

 
(a) 

 
(b) 

Figure 3: (a) NW phase configuration in a Fontainebleau sandstone subsample (a 2503 image) at the percolating 
drainage step. The NW-W fluid contact is colored red, and the NW-solid contact is colored gray. The drainage 
started from the face in the back. (b) Trapped residual wetting phase in the dolomite subsample at the end of 

drainage, Swr=26% (cf. the experimental value of Swr=22%). 
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(a) 

 
(b) 

Figure 4: (a) Curvature-saturation curve for both Fontainebleau sandstone and dolomite samples. (b) Relative 
permeability results for the Fontainebleau (FB) and dolomite (DL) 2503 drainage samples with 19.3% and 18.9% 

porosities respectively. The oil relative permeability is performed by both LBM/PLPT and LBM/MPI and the 
results are in agreement. 
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