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1 INTRODUCTION 
While applying physically-based mathematical models of flow and transport (Darcy's law and 

conservation equations) to an actual field situation, the spatial variability of soil hydraulic 
properties have to be considered in order to provide realistic predictions of unsaturated flow and 
transport at field scale. This heterogeneity can be included in the modelling by various 
approaches, depending on the problem of interest. In this study, samples of heterogeneous soils 
are generated using sets of spatially correlated random field parameters that are either 
geometrically isotropic, or else anisotropic with perfect or imperfect stratification. Numerical 
simulations of unsaturated flow are then performed on each sample, with the mean flow either 
perpendicular or parallel to stratification, using a gravitational boundary condition at the bottom 
of the sample. The resulting effective unsaturated conductivity is then analyzed at the scale of 
the sample as a function of mean pressure or suction, and compared to stochastic and 
probabilistic theories (spectral perturbations, and nonlinear probabilistic power average). 

2 STOCHASTIC THEORY AND NUMERICAL METHODOLOGY 
The soil hydraulic parameters, which are random space functions, are represented in each case 

by a single realization. One realization for each of the soil parameter is used as input for the 
simulation model, to obtain a single realization of the unsaturated flow field. The method has 
been used previously for saturated 3D flow simulations1, and for 2D unsaturated flow and 
transport simulations2, among others. The realizations of 1D and 2D parameter fields are 
generated using the XIMUL 123D code (Ababou), which is based on the 3D turning bands 
random field generator3. More details on parameters and numerics can be found in reference 12.  

2.1 Unsaturated Constitutive Relationships 

The relationship between hydraulic conductivity )(xK  and suction head )(xψ , for each grid 
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point x  within the discretized domain, is represented by the Gardner [1958] model as:  

))()(exp()()( xxxKxK s ψβ−=  (1) 

where )(xK s  is the saturated hydraulic conductivity, and )(xβ  is the pore size distribution 
parameter, a pressure scaling parameter, generally known as Gardner's “constant”. In this study 
both parameters are considered as regionalized variables. The van Genuchten [1980] moisture 
retention function is used (assumed to be independent of space): 
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where, rθ  is residual moisture, sθ  is saturated moisture, )(xθ  is the suction-dependent moisture 
content, Θ is the “effective” degree of saturation, and finally, “α” , “n” and m=(1-1/n) are the 
van-Genuchten parameters (used here only for the moisture curve).  

Upscaled constitutive relationships for a given heterogeneous domain are obtained by 
repeated numerical flow experiments, for a series of given infiltration rates.  

2.2 Analytical )(ψEFFK  through Spectral Perturbation Theory 

In this approach, the effective unsaturated conductivity curve )(xKEFF  is expressed analytically 
from the stochastic spectral solutions of unsaturated flow obtained by 4,5,6  based on linearization 
and perturbation approximations of unsaturated Darcy equations (steady state case). The 
effective conductivity components in the two principal directions (orthogonal and parallel to 
strata) are given by: 
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where F is the mean and 2
fσ  is the variance of )( SKLn , B is the mean β , 2

βσ is the variance of 
β , and H is the mean suction. A major drawback is that this method is valid only for small 

variability ( fσ <1 and βσ  << 1), and applicable only for moderate suctions (not very dry soils). 

2.3 Analytical )(ψeffK  through the Power Averaging theory 

The Power Averaging theory (“RA model”) was developed in reference 7 and in earlier 
reports, and was also presented briefly in ref. 8. In the Power Averaging model, it is assumed that 
the local conductivity curves of the randomly heterogeneous medium are of the form:  
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))(exp()(),( ψβψ xxKxK s −=  ⇔  ))(()(),( ψβψ xxLnKxLnK s −=  ,  

where )(xKS and )(xβ  are random positive coefficients, and ψ is suction head (meters). The 
coefficients may have lognormal or any other positive distributions. In the analytical 
developments below, it will be assumed that )()( xLnKxf s=  and ))(()( xLnxa β=  are spatially 
correlated Gaussian random fields, generally cross-correlated (ρ). The effective conductivity 
curve resulting from the “RA model” (Gardner version) can be expressed as follows in the case 
of unimodal (e.g. lognormal ) statistical parameters Ks(x) and β(x) : 
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where 2
aii pA σ= ;    )1(2 faii pB σρσ+−= ; 2

fii pC σ= ; ψ  = -h is suction head, and ψβG=Ψ  
is the dimensionless suction head.  

The curve ( )ΨiK  is the principal effective conductivity component along direction iX . 
The parameter ip  is the power averaging used for obtaining conductivity along direction iX : it 
may be treated for the moment as a semi-empirical adjustable parameter. In addition, statistical 
parameters are defined as follows: Gβ  is the geometric mean of )(xβ , where : 

h
xhLnK

∂
∂

=
),(β  is the log-conductivity slope;  

aσ  is the standard deviation of log-coefficient )(xa ; fσ  is the standard deviation of log-
coefficient )(xf ; ρ  is the cross-correlation between the random log-parameters ( )(xa , )(xf ). 

The averaging powers ip  can be chosen tentatively as follows (a more complete 
conjecture is available, but in this work, we will calculate the ip ’s from the numerical 
experiments): ip  = 0 in each direction Xi if the medium is perfectly isotropic; ip  = -1 (harmonic) 
in the direction orthogonal to layers (e.g. vertically); ip  =+1 (arithmetic) in the direction parallel 
to layers (e.g. horizontally). Eqn. (5) can also be expressed as a function of ip  as follows:  
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Remarkably, the “RA” Power Averaging model in Eqn (5) yields an effective conductivity 
curve Ki(Ψ) of the same form as the spectral perturbation theory, which can also be cast in terms 
of (Ai,Bi,Ci), but with different expressions for these coefficients. In 3D, the parameters of the 
“RA” model are the 3 averaging powers “pi“ (i=1,2,3) which can be taken different horizontally 
and vertically. For a horizontally stratified medium, assuming pi = +1 horizontally and pi = -1 
vertically yields arithmetic mean and harmonic mean of the nonlinear K(h,x) curve. With this 
choice, the RA model becomes similar but not identical to the model proposed in reference 9, 
which was further investigated by 10, 11. However, 9 did not include the cross-correlation 
parameter, which plays an important role according to our simulation results and analytical 
results as well (both spectral perturbations and power averaging).  
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2.4 Numerical Experiments Approach 

Steady state gravity drainage flow simulations are performed using the 2D numerical model 
presented in references 12, 13. The transient mixed form of the unsaturated Richards equation is 
solved by Finite Differences, using Modified Picard iterations for handling the inherent 
nonlinearity. The resulting set of equations is solved by the 2D Strongly Implicit Procedure. A 
uniform infiltration rate q  is specified over the top boundary of the domain, and a unit hydraulic 
gradient is imposed at the bottom boundary, lateral boundaries are impervious. The initial 
condition is uniform pressure head. Transient simulations are performed till the steady state is 
reached by time marching. The numerical simulations are performed for a series of infiltration 
cases, i.e., for different values of “q”. Note that the transient flow results were also analyzed, and 
solute transport simulations were conducted on the steady flow fields (see references 12,13).  

3 UPSCALING UNSATURATED FLOW  

The effective conductivity is calculated numerically by interpreting the numerical simulation 
results in terms of global quantities: mean flux and mean gradient. The resulting K is plotted 
versus mean suction ψ, and it is then compared with the two available analytical results: the 
spectral perturbation solution, and the power averaging result (RA Model). In the latter case, the 
upscaled numerical conductivity curves were fitted to the power averaging formula in eqn.(6) to 
obtain the unknown coefficient pi by a nonlinear least squares optimization method. The 
numerical K(ψ) curve is also compared to the Arithmetic, Harmonic and Geometric mean K(ψ) 
curves (computed with RA model).  

The β parameter plays an important role in the resulting value of the averaging powers pi. 
Note that β is a pore size distribution parameter, whose inverse represents a capillary length scale 
(1/β = λCAP). This scale is compared to layer thickness or correlation length (λZ). The cases 
βλZ ∼ 1, βλZ < 1, βλZ  > 1 are explored.  

It was found that perfectly stratified unsaturated soils can behave like saturated media, with 
arithmetically averaged K(ψ) in parallel flow and harmonically averaged K(ψ) in perpendicular 
flow - however in some cases, depending on flow regime and layer thickness, this classical 
behavior does not hold. 

3.1 Statistical representation of flow parameters of soil. 

The mean and standard deviation values (Table 1) are taken from 14 for the generation of 
single realizations of Ln(Ks(x)) and β(x), corresponding to a coarse-textured sand from the upper 
Hanford formation at the Hanford site, Washington.  Although the two parameters are generated 
independently, the correlation lengths of both the parameters are the same, which relates each 
parameter unto itself spatially.  

In this study mainly three types of generated random fields are used:  
 In the first case, a perfectly layered “1D” random field is generated, with λX >> λZ , or 

equivalently, λX → ∞ and λZ finite. in a domain discretized into 1001 nodes. 
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 In the second case, a 2D anisotropic field with imperfect random stratification is 
generated (λX > λZ)  in a domain discretized into 501x501 grid points.  

 In the third case, a 2D random isotropic field is generated (λX = λZ) in a domain of size 
10mx10m discretized into 1000x1000 grid points.  

Table 1  Statistical Parameters of Gardner’s exponential conductivity curve 

Parameters  Mean Standard 
deviation 

Correl. length 
horizontal (m)λx 

Correl. length 
vertical (m) λz 

Δx 
(m) 

Δz 
(m) 

1. Perfectly stratified“1D” random field ; λX >> λZ  ; βλ=0.8133 
 Ln Ks (*) 0.253 0.771 ∞ 0.10 2.0 0.20
β(1/m) 8.133 1.493 ∞ 0.10 2.0 0.20
2. Imperfectly stratified “2D”random field;   λX > λZ ;βλ=1.6266 
 Ln Ks (*) 0.253 0.771 2.0 0.20 0.10 0.05
 β(1/m) 8.133 1.493 2.0 0.20 0.10 0.05
3. Isotropic “2D” random field Field; λX  >> λZ ; βλ=8.133 
Ln Ks(*) 0.253 0.771 1.0 m 1.0 m 0.01 0.01
β(1/m) 8.133 1.493 1.0 m 1.0 m 0.01 0.01

*Ks in m/d 

Table 2. Moisture retention Properties of vGM curve, assumed to be constant in space 

( )33 / mmsθ  ( )33 / mmrθ  ( )1−m
v

α  v
n  

0.397 0.027 4.306 1.82212 

 

4 NUMERICAL EXPERIMENTS AND UPSCALING 

A series of gravity drainage experiments are performed using the above-described method 
(Section 2.4) on one and two-dimensional random fields. The mass balance is also observed 
simultaneously, which is the right method to check the steady state attainment. The simulated 
flow field will be under the unit gradient condition, thus the flux is equal to the effective 
unsaturated K for which the mean pressure is obtained by corresponding pressure fields. The 
simulations are carried out for different flux rates to get the curve of effective unsaturated K. 
Two principal flow directions considered are, flow perpendicular to bedding and flow parallel to 
bedding. Flow parallel to bedding is considered on the same sample rotated by 90 degrees 
(vertical instead of horizontal strata). The flow direction remains the same, still parallel to 
gravity (gravitational flow). The resulting set of unsaturated flow fields is used to upscale 
numerically the hydraulic conductivity against mean suction. 
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4.1 Flow though Perfectly Stratified “1D” fields( λz=∞, λz=0.1m); βλ=0.8133 

A set of horizontally stratified 1D random fields Log(Ks) and β 
are generated, with the statistical parameters from Table 1, on a 
1001 node grid. The generated field of  Ln(Ks(x)) is as shown 
in Fig.1.  

      Flow Perpendicular to Stratification  
A series of simulations are performed and the upscaled 
conductivity curve is plotted and compared with the spectral 

perturbation results of 4,5,6 in Fig. 2 which match quite well. 

Fig.2 also shows the best fitted curve to the power average p = -0.0484 for the Ln(K/Kg) fit; 
p = -0.0634 for the K/Kg fit. It is seen from this figure that the numerical K(ψ) curve matches 
with the harmonic mean at low suctions (wet range), as could be anticipated, but the curve 
moves away from the harmonic mean (closer to geometric mean) at higher suctions (dry range). 
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Figure 2 Numerical results compared with Spectral perturbation theory and best fit to poweravaraging equation (RA 

model) for flow perpendicular to perfect stratification Left Ln(K/KG) fit; pi= -0.0484. right (K/KG) fit; pi= -0.0634. 

Flow parallel to Stratification.  

A series of simulations are performed to obtain the upscaled K(ψ) relation point by point. The 
numerical K(ψ) points are compared with the spectral perturbation theory of 4,5,6, to the best 
fitted power averaging model (RA Model), and to the arithmetic, harmonic and geometric mean 
curves (also computed with the aid of the RA model). The best fitted parameter is pi = -0.1749 
for the Ln(K/Kg) fit, and pi = +0.9640 the K/Kg fit. Indeed, it can be seen that the numerical 
points K(ψ) coincide with the arithmetic mean curves for low suctions (wet range)  but deviate 
somewhat from it (in favour of the geometric mean) for higher suctions (dry range).   

The different values obtained for the fitted power “pi” depend on the direction “i” (as 
expected) but also on the type of fit. The latter can be explained as follows. The LnK fit 
attributes more weight to the dry range than the K-fit. In fact, the K-fit almost completely 
neglects high suctions (low conductivities) compared to the LnK-fit, and that was one reason to 
try the LnK-fit as an alternative fit.  

Figure 1. Generated random field of Ln(Ks) 
profile for the perfectly stratified case. 
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Figure 3. Numerical results compared with Spectral perturbation theory and best fit to poweravaraging equation (RA 

model) for flow parallel to perfect stratification Left: Ln(K/Kg) fit; pi= -0.1749. Right: (K/Kg) fit; pi= -+0. 

4.2  Flow through Imperfectly Stratified Field (λx>>λz); ); βλ=1.6266 

In this case flow in imperfectly stratified medium is 
explored. The hydraulic properties of the soil remain the 
same as in Table 1 and 2, with the horizontal correlation 
length chosen much greater than the vertical one 
(λx >> λz). This yields horizontally elongated strips of soil 
(elongated imperfect layers). The generated field of the 
saturated lnKs is shown in Fig 4.  

Flow Perpendicular to Imperfect Stratification. Fig. 5 
shows the comparison of numerical results with the Yeh’s 
spectral perturbation results, which match very well, and 
the same figure also plots the the upscaled conductivity 
curve with best fitted power averaging parameter “p”: 

p = -0.0484 for the Ln(K/Kg) fit, and p = -0.0634 for the K/Kg fit. As anticipated, the numerical 
results in this case do not really match with the harmonic mean values, and some more tests need 
to be performed near saturation to explore the behavior of the imperfect stratification. 

Flow Parallel to Imperfect Stratification. Fig. 6 shows the comparison of numerical results 
with the Yeh’s spectral perturbation results, which match quite well, and also plots the best fit of 
the upscaled power average conductivity curve, which is p =+0.0636 for the Ln(K/Kg) fit and 
pi = -0.0777 for the K/Kg fit. The numerical results in this case do not really match with the 
arithmetic mean values. More points should be tested in the wet range of suctions. 

4.3 Flow Through Isotropic Field (λx = λz); βλ=1.6266 
In this case the numerical simulations are performed on a two-dimensional (2D) isotropic 

random field of 10m×10m size, with a mesh grid of 1000×1000 nodes. The statistical parameters 
given in Table 1 are used to generate isotropic field for hydraulic conductivity and for Gardner’s 
scaling parameter (exponent) in the 2D domain. Ln(Ks) field is shown in Fig. 7. A correlation 

Figure 4. Generated 2D anisotropic 
Random Field of Ln(Ks) 
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length of 0.1 m is used. The statistical resolution is therefore 10 nodes per correlation length. A 
set of gravity drainage numerical experiments are carried out for various flux rates (q). 
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Figure 5. Numerical results compared with Spectral Perturbation and Best fit to power averaging equation (RA Model) 

for flow perpendicular to imperfect stratification. Left: Ln(K/Kg) pi= -0.0484. Right: (K/Kg) fit : pi = -0.0634. 
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Figure 6. Numerical results compared with Spectral Perturbation results and Best fit to power averaging equation (RA 

Model) for flow parallel to imperfect stratification . Left: Ln(K/Kg) fit, pi=+0.0636. Right: (K/Kg) fit, pi= -0.0777. 

 

Fig.8 shows the comparison of numerical results with the 
Yeh’s spectral perturbation results, which match quite well, 
and it also shows the best fitted curve of the upscaled 
conductivity from power averaging theory (RA model), with a 
fitted power “p” equal to -0.0484 for the Ln(K/Kg) fit, and 
-0.0634 for the K/Kg fit.  

As anticipated the numerical results in this case are quite 
close to the geometric mean curve (pi = 0). The dimensionless 
capillary length scale is βλ = 8.133 >> 1. 

Figure 7. Generated random field 
Ln(Ks) with 2D isotropic auto-
correlation structure.  
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Figure 8. Numerical results compared with Spectral Perturbation theory for flow through isotropic field.  

Left: Ln(K/KG) fit, pi= -0.0484. Right: (K/KG) fit, pi= -0.1517 

5  CONCLUSIONS 
Unsaturated steady flow through randomly heterogeneous soils was simulated numerically, 

analyzed and upscaled. The β parameter described in Gardner’s exponential conductivity curve is 
a pore size distribution parameter, whose inverse represents a capillary length scale (1/β = λCAP). 
This capillary scale is compared to layer thickness or correlation length (λZ) to produce a 
dimensionless capillary scale βλ. Cases βλZ ∼ 1, βλZ < 1, βλZ > 1 are explored.  

It is found that perfectly stratified unsaturated soils can behave like saturated media, with 
arithmetically averaged K(h) in parallel flow, and harmonically averaged K(h) in perpendicular 
flow. However in some cases, depending on flow regime and layer thickness, this ‘classical’ 
behaviour does not hold.  

Overall, it was shown that the behavior of effective unsaturated conductivity can be captured 
parametrically via a probabilistic nonlinear ‘power average model’, where the product βλZ plays a 
direct role (Ababou et al.). The latter model was compared to linearized spectral perturbation theory: 
the two models are in a way “complementary”; they are not exclusive of each other, and they can be 
made to coïncide totally in some cases.  

Given these encouraging results, further work is currently being conducted to investigate more 
completely the upscaled unsaturated conductivity versus suction and the behavior of the power 
averaging exponent.  
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