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Summary.

We study transport in a lattice fracture network with unetated velocity fields using a
stochastic modeling approach. We consider a two-dimeatkregular fracture network model
characterized by a constant fracture length and fractugéeanThe transport velocity in the
fractures is a random variable. Here, we present an exawatlen of effective equations for
the average particle density and concentration variararae the microscopic disorder model.
Within a Lagrangian transport framework, we derive effecgquations for particle transport by
coarse graining, noise averaging and ensemble averagthg tifical scale Langevin equations.
We rigorously show that average particle density descréfiestively an uncoupled continu-
ous time random walk (CTRW) and the concentration varianceafied by a two particle
CTRW. The obtained mean behavior and concentration variareeompared to direct nu-
merical simulations of particle transport in single meditenlizations and the corresponding
ensemble averages.

1 INTRODUCTION

Understanding flow through fractures is essential for imprg several societal related is-
sues, including the risk assessment of nuclear waste @ikfd92], the site selection and assess-
ment of leakage risk in geological CO2 storage [3], the oil gad production from fractured
carbonates [4, 5], and the development of enhanced geadhegstems [6]. There are two
key obstacles to predicting transport through fracturedieneThe fundamental challenge is
that the location and properties of individual fractures aot identifiable. At best, only some
representative properties of the network can be inferreohfanalogue geologic outcrops or
high-resolution seismic interpretation [7, 8]. Seconds itvell known that flow through frac-
tures leads to anomalous transport [9, 10]. Anomalous pamhsefers to the spreading of a

1



Peter K. Kang, Marco Dentz and Ruben Juanes

substance or a signal in a way that deviates from classitfakdin and cannot be accurately
captured with traditional advection diffusion equatioruelo these reasons, predictive capabil-
ities related to real fractured and heterogeneous medisexezely limited. Anomalous trans-
port is not only limited to fluid flow. It is also observed in nyaather transport phenomena
such as heat and light diffusion [11], the distribution ofrfan travel [12] and the occurrence
of earthquakes [13]. In this work, we develop a stochaséimBwork to understand and predict
anomalous transport through fractured media. We adopt eabg@gn viewpoint to develop a
macroscopic (effective) description of transport in a darfpacture network model. Recently,
a Lagrangian framework was used to upscale unidirectioaasport of an adsorbed solute in a
chemically heterogeneous medium [14]. In that work, it wamn that the transport through a
porous medium with constant hydraulic conductivity andtisfig uncorrelated heterogeneous
retardation factor follows the CTRW framework. We will gealkeze the coarse graining and en-
semble averaging methodology to the simple 2D fracture otwVe show that the transport
through a simple lattice fracture networks can be describeaktly, as a CTRW that is param-
eterized by the local scale medium properties and transparacteristics. We will develop an
Eulerian formulation by performing a Kramers-Moyal expang15] of the Master equation
and derive effective equations for the ensemble mean toahsp

2 METHODOLOGY
2.1 Physical setting

We consider a simple fracture network model consisting of $@ts of parallel, equidistant,
intersecting fractures: one set at an angle and the other at an anglea with respect to
the z-axis, embedded in an impermeable matrix (see Fig. 1). Theank is then viewed as
a regular lattice of nodes and links. The nodes are assumed wwlumeless. The links of
the network have spatially-distributed properties. In fsacture model, we assume constant
aperture for all links, and a spatially distributed retaiaacoefficientk. This implies that the
flow velocity u through the links of the network is constant, while the dffecsolute velocity
v (flow velocity divided by retardation factar = %) is spatially variable. In the case of mass
transport accompanied by linear sorption, the retarddictor 12 is defined az = 1+k, where
k is a dimensionless sorption coefficient. The network is camth the sense that the retardation
coefficient at each link of the network is drawn from a giveatistical distribution. Numerous
studies at various scales and in different sites have shioatrihie distribution of many fracture
properties often follows a power-law. In nature the powerslhave to be limited by the upper or
lower limits to the scale range over which they are valid Tfjerefore, we assumed a truncated
power-law distribution folk, p, = Nﬁ exp(—%), whereN is normalization factor angd is
a parameter defining the slope of the power law (Fig. 1). Wegda ensemble of the fracture
network realizations using samg for each realization. The set of all realizations generated
this way form a statistical ensemble that is stationary agdaic.
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Figure 1: A simple fracture network with the constant fraetiength () and two sets of fracture orientation
{—a, +a} with respect to x-axis (left) and the truncated power laviriigtion of a dimensionless sorption coef-
ficient (k) with 8 = 1.5 (right)

2.2 Monte Carlo simulations

Solute transport through our lattice fracture system cagidseribed in terms of Lagrangian
equations. Lek(t) = [z(t),y(t)]" be the solute particle position at timelts evolution with
timet is given by

dz(t)
dt

= ofx(t)] cos{ (1)1} YO _ s, @

wheref € {—a, +a} is the fracture orientation andis the particle velocity, which varies from
fracture to fracture. We rewrite this system of Langevinaguns using a time parameterization

t(s):

dz(s) dy(s) .
Is = cos{0[x(s)]}, 1s = sin{f[x(s)]}, (2a)

and

di(s) 1
ds  v[x(s)]’ (2b)

where the random walk(¢) is parameterized in terms of a continuous variablevhich has

a meaning of operational time: the process is a continuum analog of the number of steps
n(t).
The time evolution of solute particle takes place on a regaktice with constant fracture
length! and fracture orientations—«, +«}. At each joint, the particle can enter either of the
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two fractures with equal probability. Thus, the above sdtarigevin equations can be coarse
grained by setting\s = [, which yields the discrete equations:

Tpi1 = Ty + [ cos(a), Ynt1 = Yn + Eulsin(a), (3a)

and

toi1 = tn + i, (3b)
where¢ € {—1, +1} represents an equiprobability random proggss %5(5+ 1)+ %6(5 —1),
assumed to be uncorrelated in time and space. We solve tisptd problem by numerical
random walk simulations using (3), for many realizationsh&f random network. We assume
a point source at origin as an intial condition. In other verdll the particles are released
atx = 0,t = 0. The concentration is defined as number of particles at eadk divided
by the total number of particles and the area representedhdoyoint. In each realization,
the transition time from node to node depends on the positidhe particle. The simulated
concentration field is highly variable from realization &alization due to differences in the
particle velocity field, as can be seen in Figure 2. We willvghleowever, that by averaging
over all possible realizations, the transition time becemmeependent of particle position as
long as the underlying random field is statistically stadign

2.3 Derivation of ensemble mean concentr ation

The particle distributior(x, ¢) in a single realization is given by

c(x,t) = (0 {x = x[s(t)]}), (4)

wherej denotes the Dirac delta distribution, and the angular latsoitenote white-noise aver-
age over many solute particles. The ensemble average ottiel distribution over realiza-
tions (i.e., the ensemble mean concentration) is given by

c(x,t) = (6 {x = x[s(t)]}), (5)

where the overbar denotes the ensemble average over tiealizdf we assume point injection
as an initial condition, the probability of a particle beiaga certain position after a fixed
number of jumps is the same for all realizations becauseoih@dgy of the fracture network
is fixed, and we assumed equal probability of jumping upward @éownward at each joint.
Moreover, the particle position and transition time areejpghdent after ensemble averaging
because the spatial distribution of the retardation faist@btained from the same probability
distribution for all realizations. Using these facts we gaave that the ensemble space-time
transition probability density follows,

(O[(x =x) = Ax] o [(t = ') = At]) = n(x —x)(t = '), (6)
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Figure 2: Mean concentration obtained by numerical randamkwimulations over four different velocity fields.
Each velocity field was generated from the same probabittysidy distribution and the result shows the large
variability of the mean concentration.
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wheren (x — x') = (§[(x —x') — Ax]) is the spatial transition probability density between
two adjacent nodes( andx), andy (¢t — t') is the corresponding temporal transition (jumping-
time) probability density. In our fracture model, spatialrtsition probability density becomes
n(x—x') = é[z — (z/ + lcosbh)| {36[y — (v + Isina)] + 26y — (v’ — Isina)] }, and the tem-
poral transition probability density becomesgt — t') = %pk(tjt' — 1). Equation (6) is our
fundamental result: the transition distance probabilitg &ransition time probability are inde-
pendent, and each depends only on the distance betweenammtieansition time. We conclude
that our lattice fracture model with heterogeneous sonpti@n be represented exactly by un-
correlated Continuous Time Random Walk (CTRW) model [15, 16].

Using the transition distance probability and transitimnet probability, we showed in the Ap-
pendix that the ensemble mean concentration can be defifetioagng.

o, 1) = /O Lt [1 - /0 i)

R(x,t'), (7a)

and

R(x,t) = Py(x,t) + /Q dx’/o dt'n(x —x)(t — t")R(X', 1), (7b)

where Py (x,t) = (0(x — xn)d(t — ty)) is the probability density of a particle arriving at
positionx at timet aftern steps, and®(x,t) = > y_, Pn(x, t) is the probability density for
a particle to just arrive at positiok at time¢. Accordingly, Py(x,t) = 6(x — 0)o(t — 0) is
the space-time patrticle distribution after O steps, whiehales a pulse point injection of all
particles at the origin. If we introduce a median transitiame ¢, the transition velocity = %

and the dispersion tensbr = ;‘—Z the partial differential equation (PDE) form of (7) can be

obtained using Laplace transform and Taylor expansion [17]
sc*(x,5) =d(x—0) —Vv- [Vé'(x,s)|M*(s) + D : [VVe' (x,s)M*(s), (8)

where the star superscript (*) denotes the Laplace-tram&fd variable and is the Laplace
variable. Laplace-transform of memory functi@i *(s)), the first moment ofy(x) (x) and the

second moment of(x) (F) are defined as,

M) = T ©
X = /dx'n(x’)x’ x2 = /dx’x’@x’n(x'). (10)
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Figure 3: Comparison of ensemble mean concentration aatdiom Monte Carlo simulation over 10000 realiza-
tions and uncorrelated CTRW simulation (left) and Comparisf ensemble mean concentration of Monte Carlo
simulation over 10000 realizations and Analytical solntabtained by solving PDE form of CTRW equation.

J— T o 2
For our fracture modek = (77, 73) = (lcosty, 0) andx? = T1Zy  T1T2 ) (lcosby) 0 )

Tol] Tols - 0 (lsin90)2
which is showen in the Appendix. Now apply inverse Lapacediarm to (8), and we can get

0 _ - t o Valx ) —D “(x. 1! /
() = /OM(t ) V- VE(x, ) — D : VVE(x, )] dt (11)

We verified our results by comparing ensemble mean condemtrabtained from three dif-
ferent methods.

1. Ensemble averaging of Monte Carlo particle tracking satiohs over 10000 realizations
using the Langevin equation given in (3).

2. Uncorrelated CTRW particle tracking simulation with Lamon equation using uncorre-
lated space-time transition proability given in (6).

3. Solving (8) using inverse Laplace transform.

Figure 3 shows that all three methods provide almost idahéinsemble mean concentration.
The plot on the left of Figure 3 shows that the uncorrelated WTjparticle tracking simula-
tion and the ensemble averaging of the Monte Carlo simulataye exactly identical. This
verifies that the transport through our fracture model felaincorrelated CTRW. Moreover,
this is numerically significant result since this implieatthve can obtain ensemble mean con-
centration with less computational expanse compared tenglole averaging of Monte Carlo
simulations. The plot on the right of Figure 3 is almost idieadt but we can notice slight differ-
ence of the plume front shape. This may be caused by numeagpédce inversion. However,
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the difference is negligible and we can conclude that owectiffe equation (11) gives exact
solution. The developed model accurately captured anamatansport and, most importantly,
the plume shape and the evolution are determined only by arsareter §) which is the slope
of the power law region. As a result, this model is also higtfficient for the parameter deter-
mination using inversion.

3 CONCLUSIONS

The significance of this work is that the macroscopic effectransport behavior has been
derived directly from the small scale fracture descriptidinturns out that such macroscopic
description takes the form of an uncorrelated CTRW. The dwsmn relies solely on the parti-
cle jumping time distribution, which depends -in our mod®i-a single parameter. The plume
shape and evolution was dictated ByHowever, it is important to note that the CTRW model
provides ensemble mean concentration which is not an exa&hmmoncentration for a specific
realization. Therefore, information about variance betveealizations is important for under-
standing variability. Ensemble mean together with vargawd| provide essential information
for the quantification of effective transport in fractureddia. However, most physical systems
require the transport velocities to be correlated. Theegfwe will try to generalize our model
for the correlated velocity field for the future work. We cedijure that the effective transport
model may take the form of a correlated CTRW if the Lagrangi@oaity is a spatial Markov
process [18]. We will try to apply our methodology to cortethvelocity field and check the
applicability of correlated CTRW.
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