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Summary. This contribution concerns the identification of the boundary condition data
on an unaccessible part of a domain boundary, by using overspecified data on another
part this boundary which can be easily obtained. This problem happens in groundwater
flows with any types of porous media and even in saturated and homogeneous porous
medium. The associated forward problem is governed by Darcy equations. Sensitivity of
the recovered boundary data against physical and numerical parameters will be discused.

1 INTRODUCTION

Since last decades, numerical simulations in hydrogeology have developed rapidly and
filled a substantial gap in the prediction of groundwater flows. But those simulations
may remain inaccurate due to the lack of knowledge of hydrogeologic parameters in the
medium or flow variables information like hydraulic head or discharge on the boundaries.
Inverse problem methods have been extensively used as an appropriate tool for the predic-
tion of hydrogeologic parameters like hydraulic conductivity or porosity in complement to
in-field measurements. Extended reviews of inverse methods for hydrogeologic parameters
may be found in Carrera6, De Marsily7, McLaughlin11, Yeh14

Still, estimation of hydraulic head and discharge at boundaries using inverse problems
is more unusual, but may worth some consideration as complement of in-field measure-
ment campaign which may be expensive or even impracticable.
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Inverse problems for the recovery of data and its derivatives on boundaries have
been successfully applied to a wide range of physical and engineering subjets: electro-
static tomography for crack detection (Santosa12), displacement and stress analysis in
linear elasticity (Baranger3, Andrieux1 and Bonnet5), flux characterisation in heat trans-
fer (Andrieux2, Kozlov10) and leaks identification in fluid mechanics problems (Escriva8,
Belhachmi4). Standard illposed inverse problems on boundaries are formulated with over-
specified data on one boundary’s part and missing data on its complementary part, they
are called Cauchy problem or data completion problem. Among the different methods,
one consists in reformulating the illposed problem as two wellposed ones, as detailled in
Andrieux2. Then the solution is the one which minimize an error gap functional between
the two wellposed solutions. The inherent variational formulation of this method makes it
appropriate for finite element methods and efficient optimisation technics like trust-region
Newton method.

We apply this methodology to a hydrogeologic configuration inspired from work by
Konikow9 who predicted long term polluants dispersion in groundwater flow due to a
leaky chemical pond under the Rocky Mountain arsenal in Colorado, US. Although being
geometrically simplistic, our model keeps all the main hydrogeological caracteristics of
the real case flow as simulated by Konikow9, like boundary conditions and sources and
sinks.

In the next section, the physical and mathematical layout of the forward simulated
flow will be presented with emphasis on an appropriate equation scaling. Cauchy prob-
lem or data completion method is described in section three. Some results concerning the
hydrogeologic application are detailled in section four, and conclusions and perspectives
are sumed up in section five.

2 PHYSICAL AND MATHEMATICAL LAYOUT

2.1 Forward problem formulation

As mentioned before, the physical setup is derived from a hydrological model of a con-
fined saturated alluvial aquifer flow in two dimension. The model setup is directly inspired
from a test case in SUTRA code developped by Voss13, itself derived from early work of
Konikow9. The porous media is supposed undeformable with isotropic homogenous prop-
erties (hydraulic conductivity tensor K = K0Id and porosity ε0). The flow is driven by
the mass conservation equation and momentum conservation equation of motion which
reduces to Darcy’s equation. The geometry, with boundary condition data, is sketched
on figure 1. The governing equations under the former assumptions may be written as
follows:

ε0
∂ρ

∂t
+ ~∇ · (ρ~q) = Q (1)

~q = −K~∇h = −K0
~∇h (2)
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with ρ the density field, ~q the specific vector flux or specific discharge, h the hydraulic head
and Q a given distribution of sources and sinks. Under consideration of horizontal, steady
and incompressible flow (ρ = ρ0), the equations 1 and 2 reduce to a unique Poisson-like
equation on the hydraulic head, which may be written as follows:

−ρ0K0∆h(x, y) = Q(x, y) (3)

An equivalent formulation is possible, averaging the tridimensional equation along the
vertical and defining the transmissivity or hydraulic diffusivity as T = bK0 (with b the
aquifer thickness). The hydrogeological boundary conditions are the following (see figure
1): lateral frontiers (Γe and Γw) are assumed impervious (∇h ·~n = 0), constant hydraulic
on the north side and a linear profil of hydraulic head, due to a river draining, on the
south side. Two impervious rocky beds in the aquifer are introduced in the geometry.
A leaky contaminant pond is included through a pointwise source of polluant and three
sinks on a same row downstream reproduce a ”draining wall”. The sources and sinks
are modelled as pointwise Dirac distributions of mass flow rate by volume unit Qip with
respectively positive and negative magnitude. The resulting forward or direct problem
equations are:

−ρ0K0∆h(x, y) =
Np∑
i=1

Qipδ(x− xi, y − yi) ∀(x, y) in Ω (4)

~∇h(x, y) · ~n = 0 ∀(x, y) on Γw ∪ Γe (5)

h(x, y) = hn ∀(x, y) on Γn (6)

h(x, y) = ax+ b ∀(x, y) on Γs (7)

where Ω denotes the whole domain, ∂Ω = Γ = Γn ∪ Γs ∪ Γe ∪ Γw its outer boundary,
ΓN = Γe ∪ Γw and ΓD = Γn ∪ Γs are respectively Neumann and Dirichlet kind boundary
conditions subsets.

2.2 Scaling of the forward problem equation

As the boundary data completion method is based on the measurement of an error
functional, the method is sensitive to the range of variation of the forward problem solution
and the conditionning of the laplacian operator in the Poisson equation. This has a direct
impact on the convergency of the iterative minimisation algorithm of the error based
functional. With an appropriate scaling of the equation, we expect a fair reduction of the
iteration’s count needed for minimisation. We’ll show, through numerical experiments,
that the equation scaling leads effectively to a drastically reduction of the needed iterations
count for a given fixed tolerance.

The appropriate scaling relies on the definition of a reference values: Lref a character-
istic length in the horizontal plan and Qpref = ρ0K0/Lref a reference mass flow rate by
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volume unit:

x̃ =
x

Lref
ỹ =

y

Lref
h̃ =

h

Lref
Q̃p =

Qp
ρ0K0/Lref

Then former equation (4) is then reduced to its dimensionless or scaled form:

−∆̃h̃(x̃, ỹ) =
Np∑
i=1

Q̃ipδ(x̃− x̃i, ỹ − ỹi) (8)

This equation (without tilde notation) is used in the next section for the Cauchy problem
or boundary data completion problem formulation.

3 CAUCHY PROBLEM LAYOUT

Let consider the following adimensioned Cauchy problem. Hereafter, we denote by:
Γm (= Γn) the boundary where the overspecified data are known or measured, Γu (= Γs)
the boundary where the data have to be identified, Γb (= Γe ∪ Γw) the boundary where
natural boundary condition is specified.

−∆h = Q in Ω
~∇h · ~n = 0 on Γb
h = Fm on Γm
h = Hm on Γm

(9)

The method developped by Andrieux1,2 and Baranger3 is based on a simple idea which
consist in splitting the Cauchy problem into two wellposed ones. The first problem takes
into account the known Dirichlet data and the unknown Neumann one, the second problem
takes into account the known Neumann data and the unknown Dirichlet one, such that:

P1 =


−∆h1 = Q in Ω
~∇h1 · ~n = 0 on Γb
h1 = Hm on Γm
~∇h1 · ~n = η on Γu

and P2 =


−∆h2 = Q in Ω
~∇h2 · ~n = 0 on Γb
~∇h2 · ~n = Fm on Γm
h2 = τ on Γu

(10)

The following step of this method is to build an error functional on the pair (η, τ) using
a seminorm E. Indeed, h1 and h2 are obviously equal only when the pair (η, τ) meets the
real data (Fu, Hu) on the boundary Γu. We propose then to solve the data completion
problem via the following minimization:{

(Fu, Hu) = argminη,τ E(η, τ)
with (h1, h2) solution of (P1,P2)

with E(η, τ) =
1

2

∫
Ω

(∇h1 −∇h2)2 (11)

Using the properties of the h1 and h2, it is straightforward to derive an alternative
expression of the E functional:

E(η, τ) =
1

2

∫
Γu

(η − ~∇h2.~n)(h1 − τ) +
1

2

∫
Γm

(~∇h1.~n− Fm)(Hm − h2) (12)
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This expression shows that the error between the two fields h1 and h2 can be expressed
equivalently by an integral involving only the boundary of the domain Ω. Let’s remark the
following properties: E(η, τ) reaches its minimum for h1 = h2 + Cte = h, where h is the
unique solution to our data recovering problem, E(η, τ) is convex, quadratic and positive
with a minimum equal to zero. We can also observe that E(η, τ) involves integrals on the
whole boundary of the domain. Furthermore, the two fields h1 and h2 solutions of (10)
are truly coupled via the error energy-like functional. Furthermore, the alternative form
(12) of the error functional, makes possible the comparison of the proposed approach with
more classical least square error methods : Here both Neumann and Dirichlet errors are
naturally mixed and no dimensional factor is needed for that purpose. The Dirichlet error
is weighted by the Neumann one. In this approach the Neumann and Dirichlet missing
data are treated simultaneously, whereas other approaches require the evaluation of ∇h.n
from h by numerical differentiation.
The minimization problem introduced needs the evaluation of the gradient of E. The
components of this gradient can be computed in an efficient way by using the adjoint state
method, for more details see Andrieux1,2 and Baranger3. This method makes possible to
evaluate the gradient in any direction using only the determination of two adjoint fields
v1 and v2.

∂E(η,τ)
∂η

.δη = − ∫
Γu
v1δη and ∂E(η,τ)

∂τ
.δτ = − ∫

Γu
(η −∇h2.n−∇v2.n)δτ (13)

where the associated adjoint problems are:
4v1 = 0 in Ω
v1 = 0 on Γm
~∇v1.~n = ~∇h2.~n− η on Γu

and


4v2 = 0 in Ω
v2 = 0 on Γu
~∇v2.~n = ~∇h1.~n− Fm on Γm

(14)

4 APPLICATION AND RESULTS

4.1 Aquifer flow analysis: forward and inverse problem

First, we present a general overview of the simulated forward aquifer flow problem
on figure 3(a). The unscaled physical parameters for the reference case are the fol-
lowing: K0 = 2.5 10−4m/s, ρ0 = 998kg/m3, hn = 250m, a = 2.5 10−3, b = 17.5m,
Q1
p = 28.2kg/(m3s), Q2,3,4

p = −5.65kg/(m3s) and Lref = 2 104m. The flow streams from
the north face to the south side, mainly parallel to the impervious lateral sides and locally
deflected by the rocky beds and crosswise hydraulic gradient due to a river stream. A sep-
arated flow is observed in the near region of the source, modelling the leaky contaminant
pond. After postprocessing through the integration of a passive scalar convection-diffusion
equation with constant injection concentration source (C = 1000) at the leaky source, we
represent the isoconcentration field, the separated zone is clearly shown by the plume of
the contaminant, delimited by isocontour C = 240 (see figure 3(b)).

The data completion inverse problem results are reported on figures 4(a) and 4(b):
hydraulic head and discharge profil (normal derivative) on the south side of the domain
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are compared to the forward reference problem in both cases: scaled and unscaled equa-
tion. Good agreement is obtained with the reference solution corresponding to the linear
hydraulic head profil specified in eq. 7. and except from corner effets near x = 0 and
x = 0.8 no major difference exists between the two scaled and unscaled data completion
problem. Those errors are difficult to avoid in data completion problems, as corners are
mesh resolution dependant and illposedness prevent from good mesh convergency.

4.2 Numerical sensivity of the method

Besides of the general flow features, we carried out a numerical sensivity analysis of the
inverse data completion problem, in particular minimisation algorithm cost, comparing
scaled (eq. 4) and unscaled (eq. 8) equation. As shown on figure 2, the scaling improves
greatly the iterations count needed for the minimisation algorithm, i.e. trusted-region
Newton method. For a fixed tolerance criterion (tolfunc = 10−12), in the scaled case,
the criterion is satisfied with very few iterations (up to 5) and steep slope convergency.
Besides additional computations with K0 = 100K0 and finer mesh (h = h/5) show almost
independancy of the iterations count against those parameters. Whereas for the unscaled
equation, global number of iteration is more than one fold for the reference scaled case (up
to 68) and strongly dependant of physical parameter K and mesh size (up to 180). Other
results not reported here, with finer meshes and other values of hydraulic conductivity,
show the similar trends.

5 CONCLUSION

In this contribution, we present a method for inverse problems on boundaries, called
data completion or Cauchy problem, with application in hydrogeology problems. The
methodology is applied on a fully satured confined aquifer flow governed by Darcy law.
We focus on the effect of an appropriate scaling of the governing equation: numerical
results show a strong influence of the scaling on the minimisation of error gap functional
in the reformulated Cauchy problem: Mesh size and hydraulic conductivity dependency is
almost removed with proper scaling. Inverse problem, which are usually very sensitive to
numerical and physical parameters should be reformulated with scaled equations before
solving.

Extension of this method to more complex geometries and full tridimensional domains is
considered: for this goal, lowering iteration’s count in minimisation algorithms is decisive,
as finer meshes are needed for full geometric complexity. Application of data completion
to mixed formulation of Stokes equation or Darcy law with heteoregeneous and anisotropic
hydraulic conductivity field is also considered.
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Figure 1: Geometry setup with scaled
variables

Figure 2: Convergency of trusted-
region Newton method with and
without equation scaling

(a) Streamlines field (b) Isoconcentration field

Figure 3: Forward reference solution

(a) Scaled reference solution (b) Unscaled reference solution

Figure 4: Hydraulic head and discharge on south side
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