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Summary. A new method is developed for inverse groundwater modeling based on B-Spline 

parameterization of transmissivity. The objective is not only to obtain the values of model 

parameters but to determine the optimal number of parameters as well (optimal model 

complexity). The methodology is based on a B-Spline parameterization of transmissivity and 

a LLS transformation between models of different model complexities. This allows 

combination of models of different complexities using conventional GA operators. 
 

1 I�TRODUCTIO� 

Inverse modeling is the practice of assigning appropriate values to model parameters so 

that the model can make good predictions of the model outputs. In groundwater modeling, the 

model output is often the hydraulic head and the most important calibration parameter is 

transmissivity. Parameterization methods are often employed, where transmissivity is 

specified as a two-dimensional function, controlled by only a few parameters. The interested 

reader may find a comprehensive review on inverse modeling techniques in Carrera et al. 

(2005)
1
  

An important consideration in inverse groundwater modeling is the number of model 

parameters. This corresponds to the underlying model complexity.  A model with too many 

parameters (complex model) may follow the errors in the data rather than the important 

dynamics of the physical system. A model with too few parameters on the other hand may not 

have sufficient flexibility to follow the system dynamics
2
. 

In this study we use B-Spline Surface (BSS) parameterization for transmissivity. BSS are 

controlled by a number of vertices known as Control Points (CP). One advantage of BSS 

parameterization is that each CP affects only a limited part (patch) of the surface; hence a 

change of the value of a CP does not affect the entire transmissivity field. The number of 

control points of BSS representation, corresponds to model parameters of the inverse model, 

(i.e. it is related to model complexity). In the proposed formulation, the number of control 

points is also a decision variable to be determined by optimization. Genetic Algorithms (GA) 

are employed to perform the search in the parameter space.  Notice that the population of GA 

is composed by individuals of different number of parameters. A transformation procedure is 

applied, based on Linear Least Squares (LLS), which allows combination of models of 
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different parameters using conventional GA operators. 

The proposed method is applied to a hypothetical confined aquifer. The results are good 

when the genetic algorithm stops early. However, if the algorithm is allowed to run for too 

long, it converges to models of highest allowable complexity.  

2 FORMULATIO� OF I�VERSE MODELI�G 

The applications in Section 5 are based on a two-dimensional confined aquifer; however 

the method can be easily generalized to other inverse groundwater problems. The governing 

equation in 2D confined aquifer is written as: 

 S T T Q �
t x x y y

φ φ φ ∂ ∂ ∂ ∂ ∂ = + + +  ∂ ∂ ∂ ∂ ∂   
 (1) 

where  ( , )x yφ  is the piezometric head, Q  are sources or sinks, � is groundwater recharge, S  

is storativity, T K b=  is transmissivity, and t  represents time.  Transmissivity is a two-

dimensional function of spatial coordinates ( , )T f x y= . In order to solve (1) we need to 

define boundary and initial conditions, and assign appropriate values for the unknown 

parameters. In practical applications the boundary - initial conditions are obtained by the 

aquifer geology, while storativity is not considered as unknown during calibration. Hence, the 

objective of inverse modeling is simplified to finding an appropriate two-dimensional 

distribution of transmissivity so that the piezometric heads predicted by the numerical model 

are close to the actual piezometric heads, measured by field work. This can be written as an 

optimization problem, where the objective is minimization of errors between predicted and 

desired heads 
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where ˆ tφ  is the vector of the predicted piezometric heads at time t , tφ the vector of the 

measured heads, C  is a weight matrix, obs�  the number of observation points and t�  is the 

number of stress periods used in calibration. In the case of steady state: 1t� = . Objective (2) 

is a function of transmissivity ( )errf f T=  through (1). Using parameterization techniques, 

such as zonation, radial basis functions, pilot points, etc., the parameters that describe the 

distribution of transmissivity over the x y−  plane are the decision variables of the 

optimization problem.  

The objective of this work is not only to obtain the values of model parameters but to 

determine the optimal number of parameters as well (optimal model complexity). The model 

complexity depends on the number of model parameters, which depends on discretization in 

the parameter space. A parameterization based on B-Splines (BSS) is selected and, depending 

on discretization on the parameter space, models of various complexities are formed. These 

models are controlled by a grid of control points specifying the number of model parameters. 

A major advantage of BSS is that they are very flexible and can be used effectively in 

isotropic and anisotropic aquifers.  In addition, based on a transformation discussed in section 
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4, models of different complexities can be evaluated simultaneously by the genetic algorithm. 

Next, some fundamental elements of BSS are presented. 

3 B-SPLI�E AQUIFER PARAMETERIZATIO� 

A B-Spline surface (BSS) is usually defined by a rectangular grid of control points, 

although there are other varieties of BSS such as triangular
3
 or multisided

4
. In this work we 

utilized uniform, quadratic B-Spline surfaces which are a particular class of BSS, however the 

analysis can easily be extended to cubic or higher degree BSS. 

 
Figure 1. Left: A BSS controlled by 5 6×  control points. Right: A BSS controlled by its characteristic 

polyhedron. 

Figure 1 (left) illustrates a BSS (grey rectangles) controlled by a number of control points 

(CP). The CPs are organized in an array of dimensions m n×  where ,m n  define the number 

of CPs in ,x y  direction respectively. The product m n×  defines the number of parameters of 

BSS, i.e. the complexity of the model. As more CPs are used, more surface details can be 

captured by the BSS approximation. BSSs are constructed by a sequence of s t×  patches, 

where [ ]1, 2s m∈ −  and [ ]1, 2t n∈ − . In the example of Figure 1, the control points  are 

5m =  and 6n = (fig.1 follows the conventional BSS notation for CPs where the numbering 

starts from 0), while the number of patches are 2 3m − =  and 2 4n − = . Thus, the patch 

indexes are [ ]1, 3s∈  and [ ]1, 4t∈  respectively. For example the left lower patch (grey 

rectangle), is designated  as (1,1)  while the top right patch  is designated as (3,4) . For each 

patch ( , )s t , surface z  is constructed by evaluating the following matrix equation: 

 ( ) 1 1
,2 2

, T T

s s t sz u w = UM P M W  (3) 

where z  corresponds to transmissivity approximation. For quadratic B-Splines, vectors ,U W  

contain parametric variables 2 , ,1u u =  U  and 2 , ,1w w =  W , where , [0,1]u w∈ . Matrix 

[ ]1, 2,1; 2,2,0; 1,1,0s = − −M  is a basis transformation matrix and  ,s tP  is a 3x3 matrix that 

contains the coordinates of CPs with values depended on the particular patch ,s t . Matrix ,s tP  

is a 3x3 matrix of the following format  
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1, 1 , 1 1, 1

, 1, , 1,

1, 1 , 1 1, 1

s t s t s t

s t s t s t s t

s t s t s t

p p p

p p p

p p p

− + + + +

− +

− − − + −

 
 

=  
  

P  (4) 

 where ,i jp  are the heights at the CPs. For 0u w= = , equation (3) returns the z  coordinate of 

the left-bottom point of the patch being evaluated, while for 1u w= =  the value at top-right 

corner of the patch is returned. In order to generate the entire patch, we discretize parametric 

variables ,u w , and (3) is evaluated for each pair of , [0,1]u w∈ .  More details of the 

methodology can be found in Mortenson (1997)
5
 

The unknown parameters correspond to the heights at the CPs, i.e. correspond to m n×  

values ,i jp , [ ]0, 1i m∈ −  and [ ]0, 1j n∈ − . The locations of CPs over the x y−  plane are 

specified in an automated fashion depending on the number of control points ,m n . Thus, the 

decision variables during calibration are limited to heights at the CPs as well as the number of 

parameters ,m n . 

4 GROU�DWATER CALIBRATIO� USI�G B-SPLI�E SURFACES A�D 

GE�ETIC ALGORITHMS 

In typical groundwater calibration problems, the number of parameters (i.e. the complexity 

of the model) is usually specified by the modeler before optimization. Then, by minimizing 

the error, it is possible to find the optimum values of the decision variables for a fixed model 

complexity. Here, we develop a new approach, where the number of decision variables ,m n  

are unknown and can change during optimization. The method is integrated within a GA 

optimization framework. Since the GA operators are designed to combine individuals with the 

same number of parameters, we apply a transformation among models of different decision 

variables without changing the basic shape of the surface described by the decision variables. 

Then, we can use conventional GAs to perform the search.  

Next, the GA optimization method is discussed with reference to this transformation 

procedure. An initial population is first generated that spans the whole search domain. The 

population is produced by varying the number of parameters ,m n  as well as the values ,i jp  in 

(4). The population is evaluated and ranked based on the fitness function (2) and  a selection 

operator is used to select the fittest individuals as parents. The parents are combined using a 

crossover operator and offspring are generated, which form the new population. The 

population is evaluated and the process is repeated until stopping criteria are met. After 

several generations, the algorithm is expected to converge to a near global optimum solution. 

In this method, each individual represents parameters ,i jp , controlling the surface, which 

corresponds to the aquifer transmissivity. Since the model complexity represented by the 

number of parameters ,m n  is unknown to be determined by optimization, we apply a 

transformation which allows combination of individuals of different complexities. Further, the 

GA operators were modified in order to account for the particularities of BSS. In the modified 
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GA, the initial population is generated in two steps. First, the structural part (m , n ) of each 

individual is generated. The m  and n  parameters are chosen randomly within range 
max[3, , ]m m∈ …  and max[3, , ]n n∈ … , where maxm  and maxn is the maximum allowable 

parameter discretization along each directions ,x y  respectively. The minimum values of 

3m = , 3n =  correspond to the simplest model with only one patch. Then the adjusting part is 

formed by generating m n×  random numbers within range min max,p p   , where 
minp  and 

maxp  are the minimum and maximum values of parameters at the CPs. While maxm  and 
maxn are used throughout the optimization procedure, the limits minp  and maxp  are applied 

only during generation of the initial population.  

The values m  and n , define the location of CP over the ,x y  plane as follows. Let’s 

suppose that the extend of the aquifer in the x  direction is l . Then an interval distance dl  is 

defined as: ( )2 / 3 2 2dl l m= − ⋅ +   , where m  is the number of control points in the x  

direction. Then, the coordinates of the control points span from / 2dl−  to / 2l dl+  with 

discretization distance of dl . A similar formula is used in the y  direction. This formula has 

the effect of placing the surface at the center of the characteristic polyhedron. 

Once pop�  individuals are generated, they are evaluated based on the fitness criterion (2). 

After evaluation, pop�  pairs of parents are selected for mating to produce next generation. 

Since the model structure controlled by ,m n  is also a decision variable, models of different 

complexities are evaluated concurrently and two parents may have different model structures. 

A method to combine them is developed below.  

Let’s suppose that two parents a  and b , with ,a am n  and ,b bm n  CPs respectively, are 

chosen to produce an offspring with ,o om n  CPs. Note that each individual may be composed 

by different number of CPs. Also the offspring may have different CP than its parents (i.e.  
a b om m m≠ ≠ , a b on n n≠ ≠ ). In order to combine the two parents, we apply a transformation 

where both parents are converted to individuals with the same number of control points as the 

offspring, (i.e. ,o om n ) without altering essentially the shape of their initial surface.  

Let’s suppose that surface aS  defined by the values of matrix ,s tP  corresponding to the 

elements ,a am n  of parent a . In order to rebuild surface aS  controlled by a different number 

of CPs ( ,o om n ), one needs to calculate new values of matrix ,

,

a o

s tP  based on ,o om n  CPs. The 

notation ,

,

a o

s tP  represents the  BSS matrix, which describes the surface aS  of parent a  using 

the discretization of offspring o . In this transformation, the ,

,

a o

i jp  values corresponding to the 

offspring control points, must be evaluated.  

By extending (3) we obtain for surface aS  based on the new offspring  parameterization: 

 
( ), , , , , ,

1 1 1, 1 1 2 1, 1 3 1, 1 2 1 , 1 2 2 ,

, , , ,

2 3 , 1 3 1 1, 1 3 2 1, 3 3 1, 1

,a o a o a o a o a o a o

s t s t s t s t s t

a o a o a o a o

s t s t s t s t

z u w U W p U W p U W p U W p U W p

U W p U W p U W p U W p

+ − + + + −

+ − − − − +

= + + + +

+ + + +
 (5) 
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where 21
1 2

( 2 1)U u u= − + , 21
2 2

( 2 2 1)U u u= − + + , 21
3 2

U u= , 21
1 2

( 2 1)W w w= − + , 

21
2 2

( 2 2 1)W w w= − + + , 21
3 2

W w= .  The ,

,

a o

i jp  values for the new CPs, are estimated so that for 

different pairs of ,u w , the ,a oz  values obtained by (5) match the points az of the original 

surface aS . This is possible by generating values for a set of pairs between ( ),u w  and az  for 

a dense grid covering the entire surface, and matching these values with the values produced 

by equation (5) based on the offspring parameterization. Let aZ  be the values corresponding 

to the original (parent) surface and ,a oZ  the values corresponding to the trasnformed surface 

at the same set of points. Equation (5) is linear and can be written in a vector –matrix form as: 
, ,a o a o= ⋅Z A P . Matrix A  depends on terms ,U W  of new (offspring) parameterization and 

matrix ,a oP  contains the ,

,

a o

i jp  values at the new CPs. Then the original (parent) values are 

expressed as ,a a o= ⋅ +Z A P e , where e  is an error vector. The ,

,

a o

i jp  values of the new 

parameterization can now be calculated by a linear least squares fit that minimizes the mean 

squared error of  e . According to the LLS method, the values ,a oP  of the new CPs are 

calculated by the following well known expression: , 1( )a o T T a−=P A A A Z . The number of 

points selected for fitting, depends on the number of CPs of the parent. When the parent is 

more complex, more points are selected for matching in the LLS transformation.  

 
Figure 2. Left: Transformation of a surface from 5x5 to 10x10.  

Right: Transformation of a surface form 10x10 to 5x5. 

Figure 2 illustrates the transformation of a surface using the proposed method. Notice that 

when the number of CPs is increased (fig.2, left) the new surface is almost identical to the 

original. On the other hand, when the number of CPs is decreased, there is a noticeable loss of 

information, however the general characteristics of the initial surface are retained (fig.2, 

right). 

In order to combine two parents a  and b , with aP  and bP  CPs, we first convert them into 

vectors ,a oP  and ,b oP  of the offspring parameterization. While the new number of parameters 

of parents a  and b  are now different than their initial number, the resultant transmissivity 

maps are akin to the original ones aS  and bS . The resultant complexity is now equal to 
o om n×  for both parents, therefore using conventional GA operators, the parents exchange 
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their transformed genes to produce offspring. After crossover, each individual undergoes 

mutation. In this step, random perturbations are introduced for each individual with a very 

small probability. The new population is evaluated and the optimization terminates when 

stopping criteria are met.  

5 APPLICATIO�S A�D CO�CLUSIO� 

The proposed methodology is applied to a hypothetical aquifer of orthogonal shape, where 

it is assumed that there are 40obs� =  observation points distributed in the aquifer. Detailed 

description of the hypothetical example can be found in Tamer Ayvaz et al. (2007)
6
. As 

discussed above, the model parameters (model complexity) varied among solutions during 

optimization, while the maximum allowable number of control points was set equal to 
max max 11m n= = . The goal is minimization of observation error (2). The model complexity is 

expressed here as the number of parameters of the model, however, in general other measures 

of model complexity could be selected. 

In order to test the efficiency of the method, three different transmissivity maps are 

generated. The first test is based on an isotropic aquifer, the second is anisotropic and the last 

has a zonation partition. The data used in calibration are generated by the aquifer model and 

are assumed to be error free. The 40 observation points are randomly uniformly distributed 

over the aquifer.  

    
Figure 3 Comparison of true vs. predicted hydraulic field for isotropic, anisotropic and zone aquifer.  

 

Figure 3 summarizes the results of the three tests. In all three cases the estimated 

transmissivity is similar to the true field. The complexity of the optimum solution in the 
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isotropic case was 10, 9m n= = . The positions of the CPs of the estimated field are also 

plotted (correspond to intersections of the grid lines).  Notice that in the isotropic case the 

algorithm converged to a solution with m n≈ . In the anisotropic case, the algorithm 

converged to a solution  with 6, 10m n= = . It is interesting that the algorithm converged 

automatically to a solution with m n< , which  is in accordance with the stronger anisotropy 

along y  than the on x  axis. The model complexity in the last zonation application was found 

equal to 9, 10m n= = .  

Notice that the algorithm did not converge to the most complex solution in all three cases.  

This is possibly because optimization terminated before full convergence of the algorithm (the 

population size was set equal to 100 and the optimization terminated after 400 generations, 

i.e. the maximum number of function evaluations, is equal to 40000). Notice that if the 

algorithm is allowed to run for too long, it is expected to converge to models of the highest 

allowable complexity. Such models would minimize observation error, but risk memorizing 

the data and will not have a good predictive power, particularly in cases of significant 

measurement error. 

In order to avoid over fitting the data with too complex models, early stopping of the 

algorithm is advised.  Alternatively one could use additional criteria penalizing overly 

complex models
7 
. 
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