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Summary. Geophysical investigation is a powerful tool that allows non-invasive and 
nondestructive mapping of subsurface states and properties. However, non-uniqueness 
associated with the inversion process limits the quantitative use of these methods. One 
major direction researchers are going is constraining the inverse problem by 
hydrological observations and models. An alternative to the commonly used direct 
inversion methods are global optimization schemes (such as genetic algorithms and 
Monte Carlo Markov Chain methods). However, the major limitation here is the 
desired high resolution of the tomographic image, which leads to a large number of 
parameters and an unreasonably high computational effort when using global 
optimization schemes. One way to overcome these problems is to combine the 
advantages of both direct and global inversion methods through hierarchical inversion. 
That is, starting the inversion with relatively coarse resolution of parameters, 
achieving good inversion using one of the two inversion schemes (global or direct), 
and then refining the resolution and applying a combination of global and direct 
inversion schemes for the whole domain or locally. In this work, we explore the option 
of using a global optimization scheme for inversion of electrical resistivity 
tomography data through hierarchical refinement of the model resolution using a 
synthetic case study. 

 
 
1 INTRODUCTION 

Geophysical methods are increasingly used in hydrological and environmental applications 
and research. The benefits associated with geophysical investigations allow practitioners and 
researchers insight in the subsurface that was previously limited, invasive, destructive and 
expensive. Briefly, geophysical investigation includes data acquisition, inversion, and 
interpretation. The data acquisition stage includes collection of actively generated or passive 
geophysical signals, typically mechanic or electromagnetic. The inversion stage includes 
application of mathematical procedures to transform the obtained data to spatially distributed 
geophysical properties. The interpretation stage means translation of the obtained results to 
the desired understanding of the subsurface, e.g. identification of faults, spatial distribution of 
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water content or solute concentration. To name a few examples from water-related fields with 
relevance to the specific geophysical method presented in this paper, Michot et al.1 used 
electrical resistivity tomography (ERT) to map the water content dynamics in a corn field. 
Slater et al.2 mapped biogenic gas in peat soil using ERT. Kemna et al.3 used ERT to monitor 
the movement of a solute plume in groundwater. 

Although geophysical investigation promises a significant benefit to subsurface research, 
the fact that it is not accurate enough is a limitation that makes it more of a qualitative tool at 
this stage. This inaccuracy is primarily due to the geophysical inverse problem being ill-
posed. In other words, identification of many parameters using relatively little, somewhat 
noisy, information that is focused at the domain boundary is not perfect. Attempts to constrain 
the geophysical inverse problem can reduce the inversion error, yet are also limited. For 
example, Huisman et al.4 used a Bayesian coupled inversion approach to determine the 
hydraulic properties of a river dike. In such a coupled inversion, an unsaturated flow model 
describing water infiltration into the dike is used to constrain the inversion of the ERT data. 
Bamberger et al.5 also used unsaturated flow models to constrain ERT inversion for detection 
of water content distribution around an infiltration front. Nevertheless, the inversion accuracy 
is far from being perfect.  

Most geophysical inversion schemes use an optimization strategy from the direct methods 
class (e.g. gradient descent), i.e. they try to use the obtained data to generate a Jacobian matrix 
that will relate measurements to data points. An alternative to direct inversion methods may 
be found in evolutionary optimization methods. These methods typically do not attempt to 
create a direct mapping of input to output but try by a systematic search procedure to identify 
the objective function minima. Although not trivial to understand, these methods often 
guarantee convergence to the global minimum (while direct methods may converge to local 
minima). Genetic algorithms (GA; see for example Holland6) are perhaps the most known 
members of this class of optimization algorithms that also includes simulated annealing. 

In geophysics, GA are relatively rarely used. Stoffa and Sen7 were one of the first to use 
GA for seismic data inversion. Chunduru et al.8 applied GA for inversion of resistivity data, 
followed later by others. Furman et al.9 used GA for ERT experimental design. One of the 
main drawbacks of GA is that it requires significantly larger computational resources than 
direct inversion. This is primarily due to the need to simulate the process of interest (e.g. 
electrical flow) many times. For geophysical inversion, where the result is often required at 
very high spatial resolution, this is a significant limitation. Chunduru et al.8 for example used 
splines to interpolate between a subset of points which parameter values were changed in the 
GA. With respect to this problem, the work of Schwarzbach et al.10 is of special interest. They 
managed to solve the resistivity inverse problem for a large number of parameters primarily 
by parallelizing the GA code. 

Inspired in part by the idea of Chunduru et al.8 to correlate adjacent model cells, we 
suggest here to use an hierarchical approach in GA inversion of resistivity data (the approach 
can generally be used for any geophysical process). Therefore, the purpose of this paper is to 
test the concept of hierarchical refinement of the spatial resolution during inversion in order to 
obtain a more accurate solution while reducing the computational effort typically required for 
an inversion using GA. 
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2 COMPUTATIONAL METHODS 

2.1 Genetic algorithm and objective function 
Genetic algorithms, the most basic class of evolutionary optimization algorithms, were 

initially developed by John Holland in the 1960-1970’s (Holland, 1975). The general idea is 
to mimic the evolutionary principle of “survival of the fittest” into mathematical notation and 
to use it in search for an optimal set of parameters describing a system of interest. In brief, a 
GA includes an elite group that is composed of the best performing sets of parameters, a set of 
mechanisms that can create new solutions based on the members of the elite group, a 
mechanism to simulate the process of interest (e.g. electrical current flow) for a given set of 
parameters (e.g. resistivities), and a mechanism that evaluates and sorts solutions. In 
evolutionary optimization language, a set of parameters is called a chromosome, and each 
parameter is called a gene. In each evolutionary generation, N possible solutions are generated 
(together with the elite group this is the population), each of these N solutions is evaluated, 
and all solutions are sorted according to their fitness. The best Ne solutions are the new elite 
group that is used in the next generation to generate new chromosome proposals.  

In this work, we have used three mechanisms for generating new possible solutions, 
namely gene exchange, chromosome perturbation, and complete randomness. The gene 
exchange process uses two randomly selected solutions from the elite group and exchanges up 
to Ng genes between them to generate two new chromosomes. In total Nx new chromosomes 
(mutations) are created by that manner in each generation. The chromosome perturbation 
process randomly selects a chromosome from the elite group and performs up to Np 
perturbations in this chromosome. In total Na mutations of this type are generated in each 
generation. Last, the complete randomness mechanism generates Nr totally new chromosomes 
(by random population of the genes) in each generation. The purpose of this mechanism is to 
reduce the chances of the algorithm to get trapped in local minima of the objective function. It 
is important to note that the optimization of the algorithmic settings is beyond the scope of 
this paper and will be the topic of future investigations. The GA was implemented in Matlab 
(The Math Works) without using the GA toolbox of Matlab. 

Unlike most GA schemes, we have used a discrete set of possible electrical resistivity (ρ) 
values (i.e. log10ρ can be 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, or 4.0). This allowed reducing the 
computation time (due to reduction of the parameter space), and opened the way for another 
level of hierarchy in the parameter space (that is not yet implemented). In addition, a unique 
priority code was provided to each model cell. This code was used to guide the GA to spatial 
regions of interest. For example, model cells close to the surface received a higher priority in 
early generations of the GA. This higher priority was translated to probabilities for 
exchanging or perturbing genes. The subsurface was divided into three priority regions: 
priority 1 was assigned to depths up to 5 m below the electrodes, priority 2 was assigned to 
depths from 5 to 10 m below the electrodes, and priority 3 was assigned to the remainder of 
the domain. Probabilities for alternation were set at ratios of 10:2:1, 5:19:1, and 1:1:2 for 
priority regions 1 through 3, respectively, for 50, 40, and 10 percent of the total number of 
generations, respectively. 
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The fitness of each chromosome is typically quantified by the mismatch between measured 
and modeled data. In this study, the focus is on the inversion of electrical resistivity data, 
which is a notoriously ill-posed problem. Therefore, we decided to use a fitness value that 
consists of two components. The first component is the sum of squared residuals between 
measured and modeled transfer resistance. These transfer resistances were obtained by 
solving the electrical forward problem with CRMOD11. This model is a 2.5D finite-element-
based model solving the Poisson equation that describes electrical flow in the subsurface.  The 
second component is a regularization term that consists of a scaling parameter and an operator 
that calculates the first derivative of the proposed electrical resistivity distribution. The 
scaling parameter weights the importance between obtaining an adequate model fit and a 
reasonably smooth solution and it was set to 0.01 for all model runs based on preliminary 
investigations. 

2.2 Hierarchical approach  
As suggested in the introduction, the hierarchical approach may lead to a reduction of the 

number of generations required by the GA to reach optimality. We considered two levels of 
hierarchy, in the spatial space and in the parameter space. The later is not implemented in this 
paper. The basic principle that applies for both cases is that by searching for optimality in 
coarse resolution (in either spatial or parameter space) and moving to higher resolution with 
the obtained solution a significant computational effort can be saved. For the parameter space 
case, the general idea is that at early generations all parameters can vary in wide range (but 
allowing discrete values in that range), and after optimality is reached the search can be 
refined to smaller range but in higher resolution. 

In the spatial space, we implemented here four spatial resolutions. Optimality is first 
searched for the coarser resolution, and after it is obtained the optimal solution is downscaled 
to the next resolution, forming the initial elite group for that level. The details of the four 
levels considered are listed in Table 1. 

Level Resolution N Ne Nx Na Np Nr Generations
I 3 by 6 50 10 18 18 3 4 200 
II 6 by 12 50 10 18 18 7 4 1,000 
III 15 by 30 50 10 18 18 45 4 1,000 
IV 30 by 60 50 10 18 18 180 4 1,000 

Table 1 : GA parameters for the four different spatial levels 

3 RESULTS AND DISCUSSION 

3.1 Case study  
Consider a synthetic case for evapotranspiration from an initially wet hydraulically 

homogeneous subsurface of 30 m width and 15 m depth. The evapotranspiration creates in the 
subsurface two distinct regions: a wet region characterized by an electrical resistivity of ρ = 
100 Ω⋅m, and a dry region characterized by an electrical resistivity of ρ = 1000 Ω⋅m. The 
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electrical resistivity distribution is depicted in Figure 1. Twenty one electrodes are located at 1 
m separation at the central part of the domain. To obtain a set of synthetic ‘measurements’, 
199 ERT measurements were simulated with CRMOD using a combination of Wenner, 
Schlumberger and dipole-dipole arrays. In the following, these simulation results are used as 
measurements in the GA algorithm.  
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Figure 1: Layout of case-study. Cell size is 0.5 by 0.5 m and electrodes are located at the surface between x = 5 

and x = 45 m at 1 m separation. Color bar indicate resistivity in log10(Ωm). 

3.2 Solutions without using a hierarchical approach 
We start by presenting the solutions obtained for each resolution when starting from 

scratch (Figure 2). In these cases, the initial population is generated randomly. For levels II 
through IV the obtained result are presented for 1,000 generations, while for the coarsest level 
I the results are only presented for 200 generations. Figure 2 (lower right) presents the 
behavior of the objective function for these solutions. Note that although a single run is 
presented for each case, additional runs (not presented) showed similar behavior. 

One can note that some proximity to the true solution was obtained for the coarse 
resolution (level I). The correct resistivity was obtained for the first layer below the electrodes 
where sensitivity is highest. Slightly lower resistivity was obtained for the right near surface 
corner, where the resistive layer is thinner. For the finer  resolutions (6 by 12 and 15 by 30), 
the runs consisting of 1000 generations give at best a clue for the true resistivity distribution 
(higher resistivities near the surface, somewhat shifted to the left). Also, it is important to note 
that all cases underestimate the resistivity at deep regions. The number of forward model runs 
in each run of the GA are 8,000 for level I and 40,000 for each of the other levels (out of 918, 
972, 9450, and 91,800 possible combinations for levels I through IV, respectively). Clearly, only 
a small fraction of the solution space was explored.  
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Figure 2: Solutions for three resolutions starting from random guess – level I (top-left), II (top-right), III 

(bottom-left), and objective-function behavior (bottom-right). Color bars indicate resistivity in log10(Ωm). 
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Figure 3: Solutions for three resolutions starting from lower level solution – level II, starting from level I (top-

left); level III, starting from level II (top-right); level III, starting from level I (bottom-left); and objective 
function behavior (bottom-right). Color bars indicate resistivity in log10(Ωm). 

3.3 Hierarchical solutions  
Application of the proposed hierarchical approach leads in most cases to significantly 
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better solution as can be seen both visually and numerically in Figure 3. This is not the case 
for level II starting for level I, where no significant improvement was obtained. However, 
looking at the obtained results for level III (both from level I and especially II) indicate a 
solution that is much closer to the known resistivity distribution shown in Figure 1. This can 
clearly be further improved with increased number of generations and adjustment of the 
smoothness constraints. 

One can note that here as well, the deeper subsurface is often (although not always) 
underestimated. The objective function is composed of the model-data mismatch and the 
smoothness penalty. Although the smoothness penalty is only a small fraction of the model-
data mismatch, it seemed during optimization that in many cases it dominated the solution. 
This is because the variation in the smoothness is of the same order of magnitude as the 
reduction in model-data mismatch created by alternation of a single model block. In future 
investigations, the effect of this model regularization will be further explored, perhaps 
following the multi-objective optimization strategy proposed by Schwarzbach et al.10.  

Of interest is the objective function value obtained for level III. For the direct approach the 
objective function obtained after 1,000 generations was approximately 35,000 (Figure 2). 
Using either of the two hierarchical paths (III from I and III from II) the objective function 
obtained was approximately 100 (Figure 3) – over two orders of magnitude lower. Although 
this was obtained after 1,200 and 2,000 generations, one can note from Figure 3 that the 
transition between levels could have been made after 100-200 generations only. That is, the 
low objective function value of 100 could be obtained after only few 100’s of generations 
(with a population of 50). Although comparison is not direct, this is a considerable reduction 
in computation time compared to Schwarzbach et al.10 who used over 8,000 generations for a 
population of over 2,000. 

 

4 SUMMARY AND CONCLUSIONS 
Using a relatively simple GA, we demonstrated the possibility to use a hierarchical 

approach to significantly reduce the computational effort required for GA inversion of 
resistivity data. We presented the behavior of the inversion algorithm for three different 
resolutions and then to combinations of the three, using the ending point of one solution as the 
starting point of the other. For the specific case presented, computational effort was reduced 
by several orders of magnitude. The hierarchical approach was demonstrated so far only in the 
spatial space, but can also be applied to the parameter space. Although still very slow 
compared to gradient based algorithms this makes inversion through hierarchical evolutionary 
algorithms realistic. The advantages of such algorithms, and perhaps primarily the ability to 
locally remove stabilizing constraints, brings ERT specifically and geophysics in general a 
step closer to be a more quantitative tool for subsurface characterization and monitoring. 
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