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Summary. We study numerically a new model describing the multiscale flow of a single-
phase incompressible fluid and transport of a dissolved chemical by advection and diffusion
through a heterogeneous porous medium without the usual assumptions of scale separa-
tion. The new model includes as special cases the classical homogenized model as well as
the double porosity models, but it is characterized by the presence of additional memory
terms which describe the effects of local advective transport as well as diffusion. We
discuss numerical discretizations and present numerical results to show the quantitative
significance of each memory term in different regimes of flow and transport.

1 INTRODUCTION

Let Ω be a two-dimensional heterogeneous porous medium containing two disjoint flow
regimes. The subscripts f and s are associated with the fast and slow regions Ωf and
Ωs, respectively. The region Ωf is connected, but Ωs = ∪Nincl

i=1 Ωis is a union of disjoint
connected regions Ωis.

Assume that Ω is covered by a union of rectangular subdomains Ωi, i = 1, . . . ,Nincl,
with each Ωi containing exactly one inclusion Ωis. Let Ωif = Ωi ∩ Ωf be the fast part
surrounding Ωis and let Γi = ∂Ωis ∩ ∂Ωif denote the local interfaces so that Ωi = Ωis ∪
Ωif ∪ Γi. Let us assume that each Ωi is congruent to a generic cell Ω0 which contains the
fast flow region Ω0f surrounding the slow flow region Ω0s. We also denote the volume

fraction of the fast part by θf =
|Ω0f |

|Ω0|
and analogously θs = |Ω0s|

|Ω0|
= 1 − θf .

Now we describe the microscopic model of the flow and solute transport in the hetero-
geneous porous medium, with porosity and permeability discontinuous across the interface
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Γfs. The flow is described by conservation of mass and Darcy’s law:

∇ · vf = 0, vf = −Kf∇pf , x ∈ Ωf , (1a)

∇ · vi = 0, vi = −Ks∇pi, x ∈ Ωis, i = 1, . . . ,Nincl, (1b)

pi = pf , vi · n = vf · n, x ∈ Γi, (1c)

where v and p are the velocity and the pressure of the flow, respectively. The coefficient K
is the permeability of the porous medium. The solute transport equation is an advection-
diffusion-dispersion equation as follows:

φf

∂cf
∂t

−∇ · (Df∇cf − vfcf) = 0, x ∈ Ωf , (2a)

φi

∂ci
∂t

−∇ · (Di∇ci − vici) = 0, x ∈ Ωis, i = 1, . . . ,Nincl, (2b)

ci = cf , (Df∇cf − vfcf ) · n = (Di∇ci − vici) · n, x ∈ Γi. (2c)

Here, c is the solute concentration and φ is the porosity of the medium. The diffusion-
dispersion tensor is given by

D = D(v) ≡ φ [dmolI + |v|(dlE(v) + dt(I − E(v)))] . (3)

Here dmol, dl, dt are coefficients of molecular diffusivity, longitudinal and transversal dis-
persivity, respectively, and the dispersion tensor E(v) = 1

|v|2
vivj is a rank two tensor.

2 THE UPSCALED COUPLED FLOW-ADVECTION-DIFFUSION MODEL

WITH MEMORY TERMS

We shall describe the discrete version of the double-porosity model with various memory
terms for the coupled flow-transport equation as developed in [1]. To describe the upscaled
flow equation, we first define the upscaled permeability tensor K∗ as follows:

(K∗)jk =
1

|Ω0|

∫

Ω0f

(Kf )jm(y)(δmk + ∂mωk(y)) dA, (4)

where the Ω0-periodic function ωk(y) is defined as the solution of the periodic cell problem

{
−∇ · ∇ωj(y) = 0, y ∈ Ω0f

∇ωj(y) · n = −ej · n, y ∈ Γfs.
(5)

The discrete double-porosity model that we employ here uses a local affine approximation
on the interfaces which enables the model to capture the effects of advection and secondary
diffusion. The upscaled flow model can be described by the following system of equations
using a coefficient K∗ = K∗ + θsKs

2
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∇ · v∗ = 0, v∗ = −K∗∇p∗, x ∈ Ω, (6a)

∇ · v∗
i = 0, v∗

i = −Ks∇p∗i , y ∈ Ωi, i = 1, · · · ,Nincl, (6b)

p∗i |Γi
= (Π1(p

∗))i, (6c)

where the operator Π1 is the local affine approximation.
To describe the upscaled transport system with memory terms in a convolution form,

we define auxiliary functions as follows: for every i = 1, · · · ,Nincl,

φi

∂r0i
∂t

−∇ · (Di∇r0i − v∗
i r

0
i ) = 0, y ∈ Ωis (7a)

r0i (y, 0) = 0, y ∈ Ωis (7b)

r0i (y, 0) = 1, y ∈ Γi, (7c)

and for k = 1, 2, i = 1, · · · ,Nincl,

φi

∂rki
∂t

−∇ · (Di∇rki − v∗
i r

k
i ) = 0, y ∈ Ωis (8a)

rki (y, 0) = 0, y ∈ Ωis (8b)

rki (y, 0) = (y − xc
0i)k, y ∈ Γi. (8c)

Here xc
0i the centroid of Ωis.

We use kernels arising from various averages of rk. First, we use the averages of rate
of change in time

T k0
i (t) ≡

1

|Ωi|

∫

Ωis

φs

∂rki
∂t

(y, t) dA, k = 0, 1, 2 (9)

Next, the kernels T k1
i , T k2

i arising from the components of the first moments of rki , k =
0, 1, 2, are defined by

T kj
i (t) ≡

1

|Ωi|

∫

Ωis

φs

∂rki
∂t

(y, t)(y − (xC
0i))j dA, j = 1, 2; k = 0, 1, 2. (10)

Finally, for each rki , k = 0, 1, 2 we set

Sk
i (t) ≡

1

|Ωi|

∫

Ωis

(
Di∇rki (y, t) − v∗

i r
k
i (y, t)

)
dA. (11)
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Let Nincl be large and let us suppress the dependence of the kernels on i. Then the
limiting model of the transport systems with memory terms in convolution form is

φ∗∂c
∗

∂t
+ T 00 ∗

∂c∗

∂t

+ (T 10, T 20) ∗ ∇
∂c∗

∂t
−∇ ·

(
(T 01, T 02) ∗

∂c∗

∂t

)
−∇ ·

(
(S01, S02) ∗

∂c∗

∂t

)

−∇ ·

([
T 11 T 12

T 21 T 22

]
∗ ∇

∂c∗

∂t

)
−∇ ·

([
S11 S12

S21 S22

]
∗ ∇

∂c∗

∂t

)

−∇ · (D∗∇c∗ − v∗c∗) = 0, (12)

where the effective porosity φ∗ = θfφf . After we collect similar terms, the above equation
(12) can be written in the compact form

φ∗∂c
∗

∂t
+ T 00 ∗

∂c∗

∂t
+ M ∗ ∇

∂c∗

∂t
− ∇ ·

(
M∗∇

∂c∗

∂t

)
− ∇ · (D∗∇c∗ − v∗c∗) = 0, (13)

where M : (0,∞) → R
2,M : (0,∞) → R

2×2 are time dependent vector and matrix valued
memory kernels.

3 NUMERICAL DISCRETIZATION

In this section, we describe the Locally Conservative Eulerian-Lagrangian Method
(LCELM) that was used to discretize the systems (7) and (8) and the effective solute
transport equation (13). LCELM is a numerical technique that has been developed for
convection-dominated diffusive systems and is based on the operator splitting technique.
Originally, LCELM was introduced to achieve the local conservation of mass for the prob-
lem of two-phase, immiscible, incompressible flow in porous media [2], and the convergence
of a version of LCELM as applied to a semilinear parabolic problem in one and two space
variables has been proved [3, 4].

3.1 Locally Conservative Eulerian-Lagrangian Method

Consider the following initial value problem for an advection-diffusion equation:

∇t,x ·

(
φs(x, t)

u(x, t)

)
−∇ · (D∇s) + g(s) = 0, x ∈ Ω, 0 ≤ t ≤ T. (14)

We want to compute an approximate solution S to s at each discrete time step. Let
{Mij} be the rectangular partition of uniform size hx × hy of Ω. In order to define a
predecessor set for Mij , let y(t; x) be the solution of the final value problem given by

y′ = u/φ and y(tn,x) = x. (15)

4
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Then, let
∂M̃n

ij = {y(tn−1; x) : x ∈ ∂Mij }, (16)

and define the interior of ∂M̃n
ij to be the predecessor set M̃ij at time tn−1 corresponding

to Mij at time tn. Define the tube En
ij to be the set interior to Mij , M̃

n
ij and the lateral

boundary F n
ij defined by the integral curve y(t; x), tn−1 < t < tn, x ∈ ∂Mij . Then, the

solution of (14) satisfies the relation
∫

Mij

φSn dx −

∫

M̃ij

φSn−1 dx −

∫

Dn
ij

∇ · (D∇s) dxdt +

∫

Dn
ij

g(s) dxdt = 0. (17)

In order to approximate the transport part, the sets M̃n
ij and En

ij must be approximated.

Define an approximate predecessor Q̂n
ij as the quadrilateral having vertices x̂n

ij,k = xij,k −
u(xij,k ,t

n)

φ
∆t, where xij,k, k = 1, · · · 4, are the vertices of Mij.

Let Ên
ij be the tube formed with top Mij and bottom Q̂n

ij . Then the approximate

solution S to the transport part of (14) can be computed by

∫

Mij

S
n

ij dx =

∫

Q̂n
ij

Sn−1 dx. (18)

Next, we approximate the solution of the diffusive part by a cell-centered finite differ-
ence method as follows:

h2
xh

2
yφ(Sn

ij − S
n

ij) − (∆t)h2
yD11(S

n
(i+1)j + Sn

(i−1)j − 2Sn
ij)

− (∆t)h2
xD22(S

n
i(j+1) + Sn

i(j−1) − 2Sn
ij) + (∆t)h2

xh
2
yg(Sn

ij) = 0. (19)

When we apply LCELM to the upscaled transport equation (13), all the convolution
terms are treated in g(c∗).

3.2 Approximation of the convolution terms

We will approximate the convolution terms using the method developed by Peszyńska
[5]. Consider a convolution term of the form

ut ∗ τ(t) =

∫ t

0

ut(x, s)τ(t− s) ds,x ∈ Ω, t ∈ I = (0, T ). (20)

The convolution kernel τ(·) is related to the microscopic properties of the domain of the
flow. Define the partition of I as follows: let N ≥ 0 be integer, ∆t = T

N
be the time step,

let tk = k∆t, k = 0, · · · , N , and I = ∪N
k=1I

k, Ik = (Ik−1, Ik]. Denote the characteristic
function of the subinterval Ik by θk, and define a family of functions {ξk}Nk=1 by

ξk(t) =

∫ t

0

τ(t− s)θk(s) ds , (21)

5
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Figure 1: Computational domain Ω.

and define also the averages

ηi,k =
1

∆t

∫ ti

ti−1

ξk(t) dt, 1 ≤ i, k ≤ N. (22)

Then we approximate ut ∗ τ(t) at time ti as follows:

(ut ∗ τ)(ti) =
i∑

k=1

ηi,k
uk − uk−1

∆t
. (23)

4 NUMERICAL RESULTS

In this section, we present our computational results for the upscaled coupled equations
(6) and (13). Our domain Ω is a rectangle of size 80 × 20 cm2. Let the generic cell Ω0 be
a square of size l × l, and Ω0s, centered inside Ω0, be a square of size (l − δ) × (l − δ).
Therefore, the fast flow part Ω0f has uniform thickness around Ω0s.

The porosity of Ωf is φf = 0.45 and the porosity of Ωs is φs = 0.4. We consider
three different regimes of flow and transport depending on the ratio Kratio = Kf/Ks.
These are Kratio = 6, 300, 1800 and are called the low, intermediate, and high contrast
cases, respectively. We assume that the permeability Kf is isotropic and Kf = 5.78822 ·
102 cm/h. We also assume that the medium is initially fully concentrated with the solute,
ı.e. c∗ = 1, t = 0, x ∈ ∂Ω and clear fluid is pumped into the medium at the left boundary,
that is c∗ = 0, t > 0, x ∈ ∂Ωleft. We impose no-flow conditions on vf along the top and
bottom of the porous medium and vf · n = vl = 15 cm/h along the left boundary and
vf · n = vr = 15 cm/h along the right boundary of the medium. In our simulation, we
approximate the effective permeability with K∗ = 1

l2
(δ2 + (l − δ)δ) · Kf = δ

l
· Kf . The

effective diffusion/dispersion tensor is computed in the same way, i.e. D∗ = δ
l
Df . Then

we can compute v∗ = (vlK
∗/(K∗ + θsKs), 0), and v∗

i = (vlKs/(K∗ + θsKs), 0) follows.
We summarize our effective parameters for each flow regime in the Table 2. We shall
present the breakthrough curves of the solute at the right side of the medium in three
different contrast cases at the final time T = 10. Figure 2 shows the breakthrough curves
using four different models; the obstacle problem, the traditional double porosity model,
the model which includes the secondary diffusion term and the full model which includes
all memory terms. We observe different tailing effects due to different memory terms. In
high and intermediate contrast cases, the secondary diffusion and the secondary advection

6
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Domain [cm2 × h] Ω = [0, 80] × [0, 20] T=[0,10]
Generic cell [cm] l = 10 δ = 2
Porosity [-] φf = 0.45 φs = 0.4
Permeability [cm/h] Kf = 5.78822 · 102 Ks = Kf/Kratio

Diff/Disp [cm2/h] Dmol = 0.252 Dtrans = 0.0 Dlong = 1.224
Number of Elements Nx ×Ny = 16 × 64 nx × ny = 64 × 64
Time step [h] ∆t = 4.883 · 10−3 δt = 1.221 · 10−3

Table 1: Simulation parameters

Parameter Low Intermediate High
φ∗ [−] 0.2880 0.2880 0.2880
K∗ [cm/h] 1.1576 · 102 1.1576 · 102 1.1576 · 102

v∗ [cm/h] 11.5384 14.9105 14.9850
v∗
i [cm/h] 9.6157 0.2485 0.0416

Table 2: Effective parameters in three different flow regimes

terms do not seem to play an important role and, therefore, the traditional double-porosity
model yields fairly good results. However, in the low contrast case, each memory term
gives rise to a noticeable difference in the breakthrough curve. Moreover, breakthrough
curves from different permeability heterogeneity display different tailing behaviors which
are even clearer on the log-log scale in Figure 3. No significant tailing occurs in the
low contrast case. In the high contrast case the tailing is long-term and diffusion driven,
while the intermediate contrast case shows a flatter early part of tails which are primarily
advective. These phenomena coincide with the observation made in lab experiments [6].
We will discuss some properties of the memory kernels and the analysis of the numerical
methods used in this work in a forthcoming paper.
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Figure 2: Breakthrough curves using various models in high, intermediate, and low contrast cases from
left to right.
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Figure 3: Breakthrough curves using various models on a log-log scale in high, intermediate, and low
contrast cases from left to right.
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