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Summary. Variably saturated flow is often modeled with Richards’ equation, a nonlinear 

partial differential equation. Obtaining robust numerical solutions efficiently continues to be 

challenging, in particular for infiltration into non-uniform porous media. In this work we 

present an h-adaptive Galerkin finite element method that coarsens and refines the mesh based 

on an a priori error indicator paired with a temporal adaption scheme that controls the local 

truncation error at each time step. The temporal scheme is based on linear extrapolation for 

smooth functions, but has been rigorously proven to work for nonsmooth problems when a 

finite-difference Jacobian is used. We present numerical results for the pressure head form of 

Richards’ equation for infiltration problems into silt and clay, both of which lead to a 

nonsmooth model. We provide error and work measures to demonstrate the performance of 

the joint spatial-temporal adaption scheme when compared to a fixed grid approach with 

temporal error control, a fixed grid approach with heuristic time stepping, and a spatially 

adaptive approach with heuristic time stepping. We show that use of our joint scheme 

improves accuracy and computational efficiency. 

1 INTRODUCTION 

For this work, we focus on numerical solutions of Richards’ equation (RE) as a model for 

flow in partially saturated porous media  (Richards 1931). We propose a fully adaptive finite 

element method for robust, efficient solutions to the pressure-head form of RE and 

demonstrate the performance on infiltration into non-uniform porous media, which result in 

non-smooth partial differential equations.  

   

1.1 Richards’ equation 

The pressure head form of RE in one spatial dimension is given by 
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where  z is the vertical spatial dimension, sS is the specific storage coefficient, is the 

porosity of the media, sK is the saturated hydraulic conductivity, and is the pressure head. 

For this work, the nonlinear constitutive relations used to model the aqueous phase saturation, 

)(aS , and the relative permeability, )(rk are the van Genuchten  (Genuchten 1980) and 

Mualem  (Mualem 1976) formulae given by  
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The parameter values are related to the mean pore size, , and the uniformity of the pore-size 

distribution, . Here, rS  is the residual saturation and /11m . The constitutive relations 

are nonlinear power functions which are computationally expensive to evaluate. In this work 

we use piecewise linear splines to reduce the cost during simulation. Note that for values of 

between 1 and 2 (such as those for silts and clays), the relations are not Lipschitz continuous 

much less differentiable at the water table, which occurs when saturated and unsaturated 

conditions exist in the domain.  

 

1.2 Discretization 

We denote the residual form of Richards’ equation as  
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The weak form of RE is found by multiplying Eq. (4) by an appropriate weight function and 

integrating over time and space. We use the Galerkin method here with linear polynomials in 

space and piecewise constant in time, resulting in backward Euler temporal integration. 

Consider the space time domain ],0[],[ Tba with initial condition 
0)0,(z and boundary 

conditions ba tbta ),(,),( . Our finite element interpolation spaces are 
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We formulate our problem as: given 
1ˆ n
, find 

nˆ such that 
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solved with Newton’s method using a finite difference Jacobian and an exact linear solve for 

the Newton step. 

2 JOINT ADAPTION SCHEME 

2.1 Temporal adaption 

 Since the solution of RE can involve the formation of a sharp wetting front that 

propagates through the domain, a significantly small time step may be required to capture the 

formation of the front but may not be needed for the entire simulation. Temporally adaptive 

methods for RE are often based on heuristics that grow or shrink the time step sized based on 

the internal iterative nonlinear and linear solvers. We consider a basic first-order adaptive 

method that controls the local truncation error at each step. These ideas are described in detail 

in  (Kavanagh, et al. 2002) and proven to work on non-smooth problems when finite 

difference Jacobians are used  (Fowler and Kelley 2005). 

Our temporal error estimation makes use of 
1ˆ n
and 

2ˆ n
 by approximation the local 

truncation error with  
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For this 

work, if the truncation error is not below the tolerance, the current solution is rejected, the 

time step is decreased, and a new 
nˆ is sought. 

 

  

2.2 Spatial adaption 

     The spatial adaptive scheme is based on a finite element a priori error indicator given by  
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e   (Moaveni 2003). At each node kz , the error is estimated using the 

approximation  
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and for each element ],[ 1kk zz   of the mesh, the element error is the average of the error at its 

nodes.  

  The spatial adaption scheme is based on inserting and deleting nodes using Eq. (5) as a 

guide. Elements with low errors are merged and elements with large errors are split into two 

by inserting a node at the midpoint of the element.  The coarsening procedure is done in the 

reverse order of the refinement process at the element level. That is, the newest nodes inserted   

during the refinement process are removed first. Moreover, the mesh cannot be coarsened 

beyond the initial mesh. 

 

2.3 Fully adaptive approach 

The joint adaption schemes proposed here combines the temporal and spatial adaption 

schemes described above. The user may specify whether or not spatial or temporal adaption is 

performed at each time step. The algorithm makes use of a spatial adaption flag and a 

temporal adaption flag, so the user has flexibility in the number of times each adaption 

process takes place. We outline the algorithm below; spatial adaption is performed first. 

Spatial adaption phase 

S1: Given 1

1 ,ˆ
n

n t  

S2: Attempt to compute 
nˆ on the current mesh, n   

S3: If the nonlinear solver fails to converge, set 111 / ptt nn and go to S2 

S4: Using 
nˆ , compute and allocate all errors to elements along the mesh 

S5: Use element errors to obtain the new mesh 1n  

S6: Project 
nn ˆ,ˆ 1
onto 1n  

S7: If maximum number of consecutive spatial adaption processes is reached, set spatial 

flag to NO,  set temporal flag to YES and proceed to temporal adaption phase T1 

S8: Go to S1 

Temporal adaption phase 

T1: Given n

n

n

n tt ,ˆ,,ˆ
1

1  

T2: Attempt to compute 
1ˆ n
on 1n using nt  

T3: If the nonlinear solver fails to converge, set 1/ ptt nn and go to T2 

T4: Compute temporal error 

T5: If tolEn , set 1/ ptt nn and go to T2 

T6: Compute 1nt  

T7: If maximum number of consecutive of temporal processes is met, set spatial flag to 
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YES and set temporal flag to NO. 

T8: Go to T1 

 

p1 is a user specified constant. Sharp fronts which arise in the solution to RE occupy only a 

small portion of the domain, thus with the exception of the fronts, very few nodes are needed 

to produce acceptable levels of accuracy. We therefore begin our simulations with a very 

coarse mesh and a particularly small time step. Spatial adaption is used to determine the 

location of the front and then consecutive temporal adaption steps are used to determine the 

suitable step sizes thereafter. For the simulation results presented below, we started the 

adaption process with spatial adaption and then proceeded with 20 temporal adaption 

processes before adjusting the grid.  

 

3 NUMERICAL RESULTS 

 

We simulate flow through 10m long columns of silt and clay. Each simulation had constant 

head boundary condition of ( 1.0)0,(t m) at the top and ( 0)10,(t  m) at the bottom of 

the columns as well as hydrostatic equilibrium initial conditions, given by zz),0(  m. 

Extremly sharp fronts develop and propagate in the domain as a function of time requiring an 

initial time step of 6

0 10t (days). The model parameters of silt and clay are specified in  

(Kavanagh, et al. 2002). We compare results using four different approaches; the joint scheme 

(JNT), the spatial adaptive approach with heuristic time stepping (SPA/HS), a fixed spatial 

grid with heuristic time stepping (FG/HS), and a fixed grid with our temporal adaption 

scheme (FG/TA).  The spatial grid was coarsened or refined based on 04.003.0 ke  and 

the temporal error tolerance requirement was 01.0nE .  

 

For all four approaches, we begin each simulation with the same number of uniformly spaced 

nodes on the grid. Application of the spatial adaption process to the JNT and SPA/HS 

methods meant that the number of nodes varied at each time step.  The simulations are 

repeated for initial uniformly spaced grids of different sizes for all four approaches.   

 

The measure of error is the weighted L1 norm obtained by comparing the solutions of the four 

approaches to that of the highly resolved grid and is given by 
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where 
f

i and i  are the values of the pressure head obtained at the elements of the highly 

resolved grid and our corresponding schemes respectively.  Our measure of work includes the 
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number of time steps,  the computational effort of the simulations, as well as the number of 

grid nodes. 

 

The average time step sizes of the simulations are plotted against the average number of nodes 

for all four approaches for the clay and silt infiltrations in Figure 1.  The plots show that the 

temporal adaption grows the time step sizes and overall, result in fewer time steps, and  

reduces the computational effort.  That is the JNT and FG/TA methods, which make use of 

temporal adaption, require less work compared to the SPA/HS and FG/HS respectively 

 

In Figure 2, the solution errors are plotted against the average number of nodes for all four 

approaches.  The plots show that relatively low errors are obtained for the JNT and SPA/HS 

methods that make use of spatial adaption, even when initially very coarse grids are used.  

The uniformly fixed grid methods,  FG/TA and FG/HS, on the other hand require fine grids to 

yield acceptably accurate results.  

 

In Tables 1 and 2, we compare the results of the JNT and SPA/HS methods for the 

infiltrations in clay and silt in which the initial grids consist of 100 nodes, to those of the 

uniformly fixed grid methods, FG/TA and FG/HS, that use initial grids consisting of 401 

nodes.  The JNT and SPA/HS averaged about 115 nodes for the simulations.  Again we see 

from the error columns of the two tables that the JNT and SPA/HS methods yeild more 

accurate results with fewer nodes compared to the two uniformly fixed grid approaches, 

FG/TA and FG/HS.  Also in the tables, we demonstrated that the application of the temporal 

adaption scheme result in bigger time steps for the JNT and FG/TA approaches when 

compared to the heuristic time stepping schemes of the SPA/HS and FG/HS schemes 

respectively. 

4 DISCUSSION AND CONCLUSIONS  

We have presented a method for joint spatial and temporal adaption for Richards’ equation 

and tested the method on infiltration problems for silt and clay media, both of which lead to 

non-Lipschitz saturation and permeability relations. Moreover, the infiltration setting leads to 

a non-smooth model at the water table. The joint scheme offers the user a chance to control 

the local temporal truncation error while the spatial adaption improves efficiency and 

accuracy. However, the spatial adaption scheme using heuristic time stepping is competitive 

and more work needs to be done to understand the relationships between the algorithm 

parameters and various solver and adaption tolerances.  
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Figure 1: Comparison of the average temporal step size 
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Figure 2: Error measurements 

 

    

 

 

  

 

                               

 

 

Table 1:  CLAY 

 

 

 

   

 

Table 2:  SILT 

 

Method Init. 

Nodes 

Ave. 

Nodes 

CPU time 

(s) 

# of time 

steps 
Ave  

(days) 

Error 

JNT 101 114 67.704 111 0.272 9.372e-3 

SPA/HS 101 116 84.986 121 0.234 1.607e-2 

FG/TA 401 401 272.424 90 0.353 1.458e-2 

FG/HS 401 401 312.676 97 0.312 1.467e-2 

Method Init. 

Nodes 

Ave. 

Nodes 

CPU time 

(s) 

# of time 

steps 
Ave  

(days) 

Error 

JNT 101 117 76.211 212 0.334 3.955e-3 

SPA/HS 101 115 97.481 233 0.303 9.858e-3 

FG/TA 401 401 161.511 155 0.452 1.091e-2 

FG/HS 401 401 219.358 170 0.413 1.089e-2 


