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1 INTRODUCTION 

Thanks to new seismic and geostatistical techniques, reservoir geological models are 
continuously improving at defining details and including complex features inside the porous 
medium. This is happening at such a fast pace that for all the advancement in CPU 
computational powers, reservoir simulators cannot properly deal with them, leading to an 
immediate cause for developing methods to compress data into efficient averaged 
representations. Averaging techniques must give similar production forecasts as those from 
detailed geological models. The procedure to give effective data representing the detailed data 
or more generally any method that releases the burden of using computationally expensive 
algorithms is called upscaling. A good upscaling method zooms out a number of scales in 
resolution of data and yet gives similar production forecasts to the original fine grid model.  

In this work we try to assess the applicability of a wavelet approach in the calculation of 
effective permeability following on from previous works1,2 by compressing the fine operators. 
Elsewhere3,4 wavelet upscaling approaches have been used for upscaling by adaptive grid 
construction, however the framework of upscaling through fine operator compressing is fairly 
recent and needs more attention. 

Wavelets are although a relatively young field of mathematics. They have a rich 
mathematical connection with transformation analysis on the one hand, and multigrid 
numerical methods on the other. The idea of conveying an equation of residuals from a fine 
grid to coarse grid (two-grid method) to dampen the oscillations is a very well sought-after 
approach in solution of large scale system of equations.  

In a similar fashion to multigrid and under the renormalisation class of upscaling methods, 
we have investigated the applicability of wavelets to compress equations. For that purpose, 
the pressure equation is discretized, compressed and is used to avoid the computationally 
expensive step of inversion in reservoir simulation. This applicability is examined through 
some numerical experiments. Pros and cons and the possibility to extend the method over real 
flow problems are discussed. 
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2 WAVELETS 

The Fourier Transform (FT) uses the sine and cosine waves as the basis of transformation 
of an original function f that span throughout the entire time or space domain. Once we 
integrate the function  f  the features which are localised in real space are evenly spread across 
the whole frequency. This is a main drawback of FT, henceforth we cannot expect 
transformation of a function with short-lived suddenly-changing behaviour without the effect 
on other frequencies. Consequently all Fourier coefficients may suffer from the local effects. 
Therefore localised basis functions are better representation of data with local changes. A 
very well-established localised transform is Wavelet Transform5. 

The wavelet transform besides the concept of the “translation” or shift of basis in physical 
domain, “scale” is also considered. First, a function can be transformed by basis functions and 
their shifts in domain throughout space. Then scale is changed. We can either lower or 
improve the resolution. Based on basis functions of the new scale and their shifts, 
transformation of the function is carried out again. It turns out that this sort of scale analysis is 
less sensitive to noise by approximating the average of fluctuations (high frequencies) at 
different scales; [see e.g. Ref. 6]. These new transforms are called wavelets since they behave 
like small waves throughout the domain and henceforth they are localised.  

2.1 Haar wavelet 

The simplest scaling and wavelet function used in this work is the so-called box or Haar 
function7: 

���� � �1 0 	 � 
 10 elsewhere�,                 ���� � � 1�10
0 	 � 
 1 2⁄1 2⁄ 	 � 
 1elsewhere

�. (1) 

Considering a function ���� defined on interval of �0,1�, we can write: 

���� � �� ���� ������� ���� � �� ���� ������� ����. (2) 

Generally for a function on an infinite domain we can translate or shift scaling and wavelet 
functions and tile the domain and carry out integration over all tiles. The first integral takes 
the averages over the interval. The second term takes the differences over the same interval. 
Here, the coefficients for the averages and differences are  !�, �" � # ���� ������  and !�, �" � # ���� ������ , respectively. 

In discrete form, continuous functions ���� and ����  are written as � � �1 1 0 0 … �, and � � �1 � 1 0 0 … �. Then by shifting nonzero entries of these vectors successively throughout 
the domain, we can cover all the entire entries of an original dataset. Thus, instead of 
integration, dot products will evaluate averages and differences. For example, supposing a 
pressure vector & � �'(, ')� for two gridcells, then for a and d as coefficient of averages and 
differences by � � �1 1�, � � �1 � 1� we have: 

* � &. + 2⁄ � �'( � ')� 2⁄ ,   � � &. ,/2 � �'( � ')�/2. (3) 
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To recover &, we have & � *. + � �. ,. Notice that 1/2 is added for normalisation. We 
can also write: 

. � 1
√2 01 11 �11 , (4) 

. is a transformation matrix comprising of first row as averaging and second row as 
differencing operators. The inverse transform & � .23&4 recovers the original function. 

For vectors of sizes greater than two, first the averages over each pair are calculated, and 
then we can transform new averages into a new set of average and difference coefficients. In 
this fashion we will have the hierarchical expansion of a vector P(.) in fine grid space J to 
coarser grid j as: 

&�. � � ∑ *6,7+6,7�. �789 � ∑ ∑ �:,7,:,7�. �789;2(:<6 . (5) 

 In Eq.(5), (.) denotes the domain, that can be a vector of N gridcells. k is the number of 
pairs, for example for the first transformation k=N/2. j and J are respectively coarse and fine 
grids. a and d are respectively average and difference coefficients. It is clear that we have P(.) 
as a series of a coarse set of average coefficients and a hierarchy of difference coefficients 
from coarse to fine grids.  

Extension of wavelets to higher dimensions is generally carried out by using the tensor 
product of one dimensional basis functions to cover dimensional domain of an original data. 
In two dimensions we produce three groups of wavelets corresponding to scaling function =>,?,?@. One represents differences in the horizontal direction, one in the vertical and the other 
in the diagonal direction. If A stands for horizontal, B for vertical and � for diagonal 
differences, the wavelets are C6,7,7@D , C6,7,7@E , and C6,7,7@F  .  

2.2 Matrix representation of transforms  

Writing the filters as entries of a vector in terms of discrete numbers and then shifting the 
vectors through a matrix rows will give us a form of mapping operator. This operator is 
applicable to vectors of similar size and maps that vector into two sets of scaling and 

differences (or detail) coefficients. In general we can write: .6 � GH6I6J, which H6 and 

I6represent discrete values of ���� and ���� as averaging and differencing operators in scale j  
respectively. From orthonormality of basis functions and consequently each rows of .6, it is 
simple to investigate that .6K.6 � L, where L is the identity matrix. One can now go further 
into coarser scales and come up with a hierarchy of high and low pass filters corresponding to 
a ladder of scales inside a single matrix, to do so we write: 

Mℓ � G.62ℓ
L J G.62ℓO(

L J … G.62(
L J .6 . (6) 

In this equation ℓ is the coarsest level and P is the finest one, the size of the corresponding I 
blocks are so that matrix multiplication can be carried out. Note that hierarchical matrices or 
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M-matrices are also unitary i.e. their transpose are their inverse. The resolution in which a 
data set satisfactorily and efficiently expresses the original data in compressed form can be 
chosen by thresholds. The hierarchical transformation in this fashion can be extended over 
discretized form of operators from partial differential equations. In this sense we actually 
project an operator into coarse and detail subspaces. Consider the following one-dimensional 
boundary value problem partial differential equations: 

QR��� � �  ST U,  � � g ST WU. (7) 

Q is differential operator. After discretization of the equation in fine grid scale P � 1 we 
have: 

X6O(Y � Z,     Y, Z 8 P � 1, X6O( 8 Q�P � 1, P � 1�. (8) 

This equation can originate from any discretization scheme of a given differential equation. 
Now, using orthogonality of . matrices we can write: �.6X6O(.6K�.6Y � .6Z, Which the 
projected operator and vectors are: 

.6X6O(.6K � [\6X6O(\6K ]6X6O(\6K\6X6O(]6K ]6X6O(]6K^ � GX6 _6
6̀ a6J , .6Y � GbcbdJ , .6Z � GecedJ . (9) 

Which a stands for average and d stands for differences or details. The application of 
another level of transform is equivalent to using a two-level hierarchical matrix M on the 
original equation as: 

fMX6O(  MKgMY � MZ. (10) 

One can perform multilevel hierarchical matrices to have multilevel representation of the 
solution in this manner. By calculating a coarse solution we can consider next level higher-
resolution operator to calculate finer solution. The advantage is the ability to decide 
significance of details in each level so that we can stop the algorithm at some certain stage.  

3 UPSCALING OF THE PRESSURE EQUATION  

In this section we carry out the above matrix procedure on the discretized pressure 
equation, the resulting coarse submatrix is used for calculation of coarse fluxes and coarse 
saturation like any other absolute permeability upscaling process. The two dimensional 5-
point-stencil-finite-difference discretization of the elliptic pressure equation for flow of an 
incompressible fluid in a no-gravity, no-capillary porous media reads: 

�h. i�j�kh' � l m  n' � �. (11) 

In this equation i�j� is the total mobility factor as a function of saturation, K is diagonal 
permeability tensor, p is the total pressure and q includes source and sink and boundary 
conditions contributions. After finite difference discretization n is the diagonal matrix 
containing transmissibilities over the grid block faces. The transmissibilities in finite 
difference are constructed by harmonic averaging of i�j�k between adjacent gridcells. The 
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same multiscale representation described in previous sections can be followed by application 
of hierarchical matrix m as:  

�MnMK�Mo � Mp.    (12) 

Defining the multiscale operator as n:q � MnMK, and multiscale vectors ':q � M', �:q � M� leading to multiscale representation of pressure equation as: 

n:q':q � �:q  (13) 

Now, selecting the coarse part of the operator (see Figure 1) is equivalent to upscaling the 
whole equation. After coarsening the operator, the relevant coarse diagonal transmissibilities 
are extracted to calculate the flux. 

 
Figure 1-Non-zero sparsity pattern of an original fine pentadiagonal transmissibility matrix (left) and its 

decomposition into two levels of projection (middle and right). In each projection, the block upper left block 
separated by red lines represent the compressed form of the operator, a self-similar repeating sparsity pattern is 

visible; such pattern has been taken advantage of in large scale code developing 

4 NUMERICAL EXPERIMENT: INCOMPRESSIBLE TWO-PHASE TW O-
DIMENSIONAL WATER FLOODING  

In this section we apply the method for upscaling to a water flooding process. A 
permeability field has been generated using a correlated log-normal permeability8. We run 
simulations on a generated reservoir cross-section of 256 t 256 number of gridcells with an 
anisotropic permeability (uv w ux�. The subsequent permeability field has a contrast in 
absolute permeability of order of magnitude of 6, the mean and standard deviation of the 
original grid upon which the log-normal permeability was constructed are y � 1 and z) � 25 
, respectively. The dimensionless correlation lengths are {v | 0.18, {x | 0.08 in unites of the 
linear dimensions of the system. The natural logarithm of permeability field is shown in 
Figure 2. The flow is taken to be horizontal. A a quarter 5-spot pattern, water is injected in 
upper left gridcell while oil is produced from lower right gridcell. For these two wells we 
used a constant rate of injection and production of one pore volume per unit of time. No flow 
boundary condition is used elsewhere in the domain. The simulation was run for the injection 
of one pore volume. Table 1 lists other specifications. 
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Number of gridcells 256*256 
Area  1 

Dimensionless Correlation length in x-direction 0.18 
Dimensionless Correlation length in y-direction 0.08 ~/�� 0.04 ?�� j�), � � S, � ~�/~. 1 

φ 1 
Table 1-Specifications for first example 

 
Figure 2- The absolute permeability, left is logarithm of permeability in � and second is in � direction, 

respectively.  

After each coarse pressure and saturation solve, we carry out propagation of saturation 
over the original fine grid with cubic spline interpolation. This choice of interpolation 
provides a smoother profile. The operator-coarsening has been assessed in three levels and the 
saturation profiles as well as the production curves are compared to the reference fine model 
in Figure 3. The overall shape of the cuts and the breakthrough times with up to two levels 
are in good agreement with the fine model.  

In Table 2 scale-up factor refers to the value that operator is compressed with respect to 
the original fine operator. Computation time represents runtime in seconds achieved by a 
machine with 2.80 GHz CPU. |���| denotes the relative error in recovery factor at one pore 
volume injected. |���| denotes the relative error in breakthrough time. Breakthrough time is 
chosen as the time that oil production fraction falls to 0.95. 

The second example is a comparative experiment between an operator coarsening and 
permeability averaging upscaling. For emphasizing the underlying permeability 
heterogeneities, a shale structure of zero permeability is placed diagonally across the flow 
path. Figure 4 is the saturation profile for the fine model and the upscaled models, it is clear 
that the operator coarsening has led to a closer approximation of saturation to the fine model 
than that by just averaging the permeability. 
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(a) (b) 

(c) (d) 

Figure 3- Simulation results for one pore volume injection in 3 levels of coarsened operator (a,b,c) and reference 
model (d), a is Level Three, (b) is Level Two and (c) is Level One, in each subplot the saturation profile over the 

cross-section and curves for water and oil cuts are depicted, resolution is enhanced level by level 

Level Scale-up factor Computation time(sec.) |���| |���| 
REF. --- 826 --- --- 

1 4 74 1 2.2 
2 16 33 1 6.6 
3 64 30 3 13.3 
4 256 29 8 22.2 

Table 2-Quality assessment for four levels of operator-coarsening  

 
Figure 4- A shale-included system: fine scale saturation profile at 1 PV injection (left), same profile for third 
level of operator-coarsening (middle) and same profile for third level of permeability transformation by Haar 

scaling 2d functions (right) 
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5 CONCLUSIONS  
In this work an extension to the upscaling procedure presented in 1 is given. A self-repeating 
pattern of wavelet matrices provides us the opportunity to extend the method for systems as 
large as 60 thousand gridcells. We emphasised the preservation of the fine scale permeability 
field. Instead of averaging the absolute permeabilities, the discretized operator was 
transformed into a compressed, average representation.  Moreover, inspired by multigrid 
methods we implemented a high order prolongation operator which can map the saturation 
profile back to an original fine grid in more monotonic result than what a linear or bilinear 
interpolation could achieve.  
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