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1 INTRODUCTION

Thanks to new seismic and geostatistical techniqueservoir geological models are
continuously improving at defining details and intihg complex features inside the porous
medium. This is happening at such a fast pace fibratall the advancement in CPU
computational powers, reservoir simulators canmoperly deal with them, leading to an
immediate cause for developing methods to comprst into efficient averaged
representations. Averaging techniques must givelaimproduction forecasts as those from
detailed geological models. The procedure to gifectve data representing the detailed data
or more generally any method that releases theebuad using computationally expensive
algorithms is called upscaling. A good upscalinghnd zooms out a number of scales in
resolution of data and yet gives similar producfiarecasts to the original fine grid model.

In this work we try to assess the applicabilityaoivavelet approach in the calculation of
effective permeability following on from previousovks',? by compressing the fine operators.
Elsewherd* wavelet upscaling approaches have been used fmalipg by adaptive grid
construction, however the framework of upscalingtigh fine operator compressing is fairly
recent and needs more attention.

Wavelets are although a relatively young field ohthematics. They have a rich
mathematical connection with transformation analyeh the one hand, and multigrid
numerical methods on the other. The idea of comgegin equation of residuals from a fine
grid to coarse grid (two-grid method) to dampen akeillations is a very well sought-after
approach in solution of large scale system of egnat

In a similar fashion to multigrid and under theagenalisation class of upscaling methods,
we have investigated the applicability of wavel@tscompress equations. For that purpose,
the pressure equation is discretized, compressddsansed to avoid the computationally
expensive step of inversion in reservoir simulatidhis applicability is examined through
some numerical experiments. Pros and cons andoehlity to extend the method over real
flow problems are discussed.
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2 WAVELETS

The Fourier Transform (FT) uses the sine and cosenees as the basis of transformation
of an original functionf that span throughout the entire time or space dunfance we
integrate the functiorf the features which are localised in real spaceaealy spread across
the whole frequency. This is a main drawback of FEnceforth we cannot expect
transformation of a function with short-lived sudiechanging behaviour without the effect
on other frequencies. Consequently all Fourierfawehts may suffer from the local effects.
Therefore localised basis functions are betteresgmtation of data with local changes. A
very well-established localised transform is Wat@lnsform.

The wavelet transform besides the concept of ttamSlation” or shift of basis in physical
domain, “scale” is also considered. First, a funtitan be transformed by basis functions and
their shifts in domain throughout space. Then séslehanged. We can either lower or
improve the resolution. Based on basis functionstiid new scale and their shifts,
transformation of the function is carried out agdtinurns out that this sort of scale analysis is
less sensitive to noise by approximating the awerafyfluctuations (high frequencies) at
different scales; [see e.g. R8f. These new transforms are called wavelets sineg behave
like small waves throughout the domain and hendefibbley are localised.

2.1 Haar wavelet

The simplest scaling and wavelet function usecdhis work is the so-called box or Haar
function’:
1 0<x<1/2 1)
Yx) = {—1 1/2<x< 1.

0 elsewhere

1 0<x<1
0 elsewhere’

o) = {

Considering a functiofi(x) defined on interval of0,1], we can write:

)
160 = ([ reo @) o) + ([ FGpedx) o,
Generally for a function on an infinite domain wandranslate or shift scaling and wavelet
functions and tile the domain and carry out intégraover all tiles. The first integral takes
the averages over the interval. The second terestitie differences over the same interval.
Here, the coefficients for the averages and diffees are (f,¢) = [ f(x) p(x)dx and
(fL, ) = [ f(x)Y(x)dx , respectively.
In discrete form, continuous functioggx) andy(x) are written ag =[1100...], and
Y =[1-100..]. Then by shifting nonzero entries of these vectarassively throughout
the domain, we can cover all the entire entriesaforiginal dataset. Thus, instead of
integration, dot products will evaluate averaged differences. For example, supposing a
pressure vectaP = [p;, p,] for two gridcells, then foa andd as coefficient of averages and
differences by = [11],% =[1 — 1] we have:

a=P.@/2=(p,+p)/2, d=P.P/2 = (p, —Dp2)/2. (3
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To recoverP, we haveP = a. @ + d.y. Notice thatl/2 is added for normalisation. We
can also write:

w=%[i M @)

w is a transformation matrix comprising of first roae averaging and second row as
differencing operators. The inverse transfdns w~1P’ recovers the original function.

For vectors of sizes greater than two, first therages over each pair are calculated, and
then we can transform new averages into a newfsatesage and difference coefficients. In
this fashion we will have the hierarchical expanstd a vectorP(.) in fine grid space to
coarser grig as:

P() = Ykez @k Pjr() + Zln_:j Ykez e Wmi (). (5

In Eq.(5), (.) denotes the domain, that can beaor ofN gridcells.k is the number of
pairs, for example for the first transformatiksmN/2. | andJ are respectively coarse and fine
grids.a andd are respectively average and difference coeffisidhis clear that we haw.)
as a series of a coarse set of average coefficsarmtsa hierarchy of difference coefficients
from coarse to fine grids.

Extension of wavelets to higher dimensions is galhercarried out by using the tensor
product of one dimensional basis functions to calierensional domain of an original data.
In two dimensions we produce three groups of waseterresponding to scaling function

®@; .- One represents differences in the horizontaktos, one in the vertical and the other
in the diagonal direction. Ih stands for horizontaly for vertical andd for diagonal

; \ d
differences, the wavelets afg, ./, WY, ,/, and§, . .

2.2 Matrix representation of transforms

Writing the filters as entries of a vector in terofsdiscrete numbers and then shifting the
vectors through a matrix rows will give us a forrh mapping operator. This operator is
applicable to vectors of similar size and maps tettor into two sets of scaling and

[OF
differences (or detail) coefficients. In general wan write: w; = [q,’] which ¢; and
]

Y;represent discrete valuesqfc) andy(x) as averaging and differencing operators in scale
respectively. From orthonormality of basis functicand consequently each rowswyf it is
simple to investigate thatjw; = I, wherel is the identity matrix. One can now go further

into coarser scales and come up with a hierarctygbf and low pass filters corresponding to
a ladder of scales inside a single matrix, to dowsavrite:

me=[ P ?

In this equatior? is the coarsest level aijids the finest one, the size of the correspontling
blocks are so that matrix multiplication can beriear out. Note that hierarchical matrices or
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m-matrices are also unitary i.e. their transposetlae& inverse. The resolution in which a

data set satisfactorily and efficiently expresses driginal data in compressed form can be
chosen by thresholds. The hierarchical transfoonaitn this fashion can be extended over
discretized form of operators from partial diffetiah equations. In this sense we actually
project an operator into coarse and detail subsp&@ensider the following one-dimensional

boundary value problem partial differential equasio

Lu(x)=f onf, f =gon . @)

L is differential operator. After discretization dfet equation in fine grid scaje+ 1 we
have:

L, U=F, UFej+1L, €L(+1j+1). (8)
This equation can originate from any discretizaBoheme of a given differential equation.
Now, using orthogonality ofv matrices we can writéw;L; ,w;)w;U = w;F, Which the
projected operator and vectors are:

Wil wt = |k Gl [Lj Bj] wU = [Ua] wF = [Fa] ;.
jhj+1W HjL].H(;j* Gij+1G; C; DI’ Ugl” ™/ Fal°

Which a stands for average artistands for differences or details. The applicatidn
another level of transform is equivalent to usingva-level hierarchical matrixn on the
original equation as:

(ijHm*)mU = mF. (10)

One can perform multilevel hierarchical matriceshttve multilevel representation of the
solution in this manner. By calculating a coarskitsan we can consider next level higher-
resolution operator to calculate finer solution.eThdvantage is the ability to decide
significance of details in each level so that we s®p the algorithm at some certain stage.

3 UPSCALING OF THE PRESSURE EQUATION

In this section we carry out the above matrix pdace on the discretized pressure
equation, the resulting coarse submatrix is useddtculation of coarse fluxes and coarse
saturation like any other absolute permeabilitycafing process. The two dimensional 5-
point-stencil-finite-difference discretization dfi¢ elliptic pressure equation for flow of an
incompressible fluid in a no-gravity, no-capillgggrous media reads:

—V.A(s)KVp=q - Tp = f. (11)

In this equation(s) is the total mobility factor as a function of sattion, K is diagonal
permeability tensorp is the total pressure arglincludes source and sink and boundary
conditions contributions. After finite differenceisdretizationT is the diagonal matrix
containing transmissibilities over the grid blockcés. The transmissibilities in finite
difference are constructed by harmonic averaging(9k between adjacent gridcells. The
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same multiscale representation described in prevéegtions can be followed by application
of hierarchical matrixn as:

(mTm*)mp = mf. (12)

Defining the multiscale operator & = mTm*, and multiscale vectorp™® = mp,
™ = mf leading to multiscale representation of pressquagon as:

T™Sp™s = fms (13)

Now, selecting the coarse part of the operator F&gere 1) is equivalent to upscaling the
whole equation. After coarsening the operator,réievant coarse diagonal transmissibilities
are extracted to calculate the flux.
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Figure 1-Non-zero sparsity pattern of an origima¢ fpentadiagonal transmissibility matrix (left)daits
decomposition into two levels of projection (middled right). In each projection, the block uppdiridock
separated by red lines represent the compressedofathe operator, a self-similar repeating spgnséttern is

visible; such pattern has been taken advantagelafge scale code developing

4 NUMERICAL EXPERIMENT: INCOMPRESSIBLE TWO-PHASE TW O-
DIMENSIONAL WATER FLOODING

In this section we apply the method for upscalinga water flooding process. A
permeability field has been generated using a lzae® log-normal permeability We run
simulations on a generated reservoir cross-secfi@s6 x 256 number of gridcells with an
anisotropic permeability ki # k,). The subsequent permeability field has a contnast
absolute permeability of order of magnitude of e mean and standard deviation of the
original grid upon which the log-normal permeabpilitas constructed afe= 1 ando? = 25
, respectively. The dimensionless correlation leagirel, ~ 0.18,1, ~ 0.08 in unites of the
linear dimensions of the system. The natural Idlyariof permeability field is shown in
Figure 2. The flow is taken to be horizontal. A a quartespot pattern, water is injected in
upper left gridcell while oil is produced from loweght gridcell. For these two wells we
used a constant rate of injection and productioanaf pore volume per unit of time. No flow
boundary condition is used elsewhere in the donfdie. simulation was run for the injection
of one pore volumeTlable 1lists other specifications.
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Number of gridcell 256*25¢€
Area 1
Dimensionless Correlation lengin x-directior 0.1€
Dimensionless Correlation lengin y-directior 0.0¢
u/o? 0.04
k,; st,i=ow
Ho/My 1
[7) 1

Table 1-Specifications for first example

B O P N W A O

Figure 2- The absolute permeability, left is logam of permeability irk and second is ig direction,
respectively.

After each coarse pressure and saturation solvesamy out propagation of saturation
over the original fine grid withcubic spline interpolation. This choice of interpolation
provides a smoother profile. The operator-coargehas been assessed in three levels and the
saturation profiles as well as the production csrage compared to the reference fine model
in Figure 3. The overall shape of the cuts and the breakthrdinges with up to two levels
are in good agreement with the fine model.

In Table 2 scale-up factor refers to the value that operngteompressed with respect to
the original fine operator. Computation time repras runtime in seconds achieved by a
machine with 2.80 GHz CPUk,;| denotes the relative error in recovery factor a pore
volume injected|e;;| denotes the relative error in breakthrough timesaRthrough time is
chosen as the time that oil production fractioisfad 0.95.

The second example is a comparative experimentdagtvan operator coarsening and
permeability averaging upscaling. For emphasizinge tunderlying permeability
heterogeneities, a shale structure of zero perityaisi placed diagonally across the flow
path.Figure 4 is the saturation profile for the fine model ahd tipscaled models, it is clear
that the operator coarsening has led to a clogaogjmation of saturation to the fine model
than that by just averaging the permeability.
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Figure 3- Simulation results for one pore volunjedtion in 3 levels of coarsened opergib,c) and reference
model(d), a is Level Thregb) is Level Two andc) is Level One, in each subplot the saturation pFafver the
cross-section and curves for water and oil cutslapcted, resolution is enhanced level by level

Level  Scale-up factor Computation time(sec.) |egg| legr]
REF. --- 82¢€ ---
1 4 74 1 2.2
2 16 33 1 6.6
3 64 30 3 13.3
4 25€ 29 8 22.2

Table 2-Quality assessment for four levels of ojpereoarsening

Figure 4- A shale-included system: fine scale sditnm profile at 1 PV injection (left), same prefilor third
level of operator-coarsening (middle) and sameilerédr third level of permeability transformatidry Haar
scaling 2d functions (right)
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5

CONCLUSIONS

In this work an extension to the upscaling procedwesented ihis given. A self-repeating
pattern of wavelet matrices provides us the oppdstito extend the method for systems as
large as 60 thousand gridcells. We emphasisedrédsegvation of the fine scale permeability
field. Instead of averaging the absolute permed#sli the discretized operator was
transformed into a compressed, average represamtatMoreover, inspired by multigrid
methods we implemented a high order prolongatiogratpr which can map the saturation
profile back to an original fine grid in more moapic result than what a linear or bilinear
interpolation could achieve.
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