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Summary. The initial width of contaminant plumes has a key influence on expected plume
development, dispersion and travel time statistics. In past studies, initial plume width has been
perceived identical to the geometric width of a contaminant source or injection volume. A
recent study1 on optimal sampling layouts for minimum variance prediction of contaminant
concentration showed that the largest uncertainty in predicting plume migration stems from
the total hydraulic flux through the source area, overwhelming other sources of uncertainty
along the further travel distance in a large range of situations. This result points towards a
missing link between source geometry and plume statistics, which we denote as the effective
source width. We define the effective source width by the actual, rather than the expected
hydraulic flux, through the source area. It is a stochastic quantity that may strongly differ from
the actual geometric source width for small sources, and becomes identical only at the limit of
wide sources (approaching ergodicity). We derive its stochastic moments in order to explore the
dependency on scale and to define the limit of ergodic contaminant source (not plume) width.
Effective source width is a contribution to dispersion since it is linked to the prediction variance
of plume width. It is separable from the dilution part of dispersion similar to spreading and the
uncertainty in predicting the center of mass is separable from dilution. We show that the chance
of plumes to be consumed in a single hot-spot of mixing and dilution depends strongly on its
overall width. Therefore, its knowledge will improve the prediction of contaminant dilution
and mixing. In addition, we illustrate that if the effective source width at a given site is known
rather than the geometric width, predictions of plume development, d ispersion and travel time
statistics would greatly increase in predictive power. The results of this study also offer advice
in what situations sampling efforts should focus primarily on release conditions rather than on
other sources of uncertainty.
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1 INTRODUCTION

Stochastic description of contaminant transport is a necessity since full characterization of
natural porous media, such as aquifers, is an unfeasible task. Many past studies have provided
powerful tools to predict contaminant transport, based on the ensemble behavior of spatial and
temporal moments2. In these studies, the initial width of a plume (e.g., the dimension of the
contaminant source) is directly related to fundamental characteristics such as plume ergodicity
and is a key parameter in predictions of plume development, dispersion, dilution and mixing.
Up to date, the initial plume width has been perceived as identical to the width of a source or of
an injection volume3 4. A recent study by Nowak et al. (2009)1 has identified optimal sampling
strategies for minimum variance prediction of contaminant concentrations at an environmentally
sensitive location. In their resulting optimal designs, the largest number of samples is spent
in order to investigate certain hydraulic phenomena directly at the source location rather than
transport phenomena further down-gradient. The authors proposed that the major source of
uncertainty addressed by these optimal sampling schemes is the total volumetric water flux
passing through the source area.

The importance of focused volumetric water flux in the spreading of contaminants in satu-
rated porous media has been shown in the literature5. These authors showed, through numerical
and analytical approaches, how the convergence of streamlines within a zone can enhance the
transverse mixing of the plume. When flow is focused within a high permeability zone, stream-
lines converge and then diverge again. When streamlines are closer together, a higher diffusive
transfer of solute mass is faciliated, contributing to lateral plume dilution. The opposite occurs
when flow is blocked by a low permeability zone. Experimental evidence was also shown6 7,
where the squeezing of contaminant plumes in high permeability inclusions was investigated.
Based on their experimental observations,the authors7 defined a source equivalent width which
is a function of the volumetric injection rate. We will show that the effects of streamline conver-
gence/divergence are much more relevant if it occurs at the contaminant source location because
it influences the entire transport regime (mass flux, plume width, etc) further downstream. The
above evidence and discussion indicates that there is a missing link between a given source ge-
ometry and the resulting width of a plume. The basic idea of the current work is to differentiate
between the actual geometric width of the source zone and its effective width, related by what
we denote as the source efficiency. We define source efficiency as the ratio of actual versus the
expected hydraulic flux passing through the geometric area of the source. The effective source
width is an uncertain quantity that results from the stochastic nature of total discharge through
a cross-sectional area where the contaminant source is located. Hence, its theoretical statistical
moments can be derived from the integral statistics of specific discharge within the source vol-
ume. The results by Nowak et al. (2009)1 indicate that effective source width is a key parameter
in the prediction of contaminant transport. We hypothesize that, if the effective source width
at a given site was known, predictions of contaminant plume development would increase in
predictive power.

The aim of the current contribution is to support this hypothesis through the use of closed-
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formed analytical expressions for effective source width derived from the governing equations
of flow. We verify its validity with high-resolution numerical Monte-Carlo in a 2D depth-
averaged setting.

2 The Concept of Effective Source Width

2.1 Mathematical Formulation

In the following, we will differentiate between the geometric width of the source zone (wsz)
and its effective width (we f f ). We consider an incompressible, fully saturated, two-dimensional
steady-state flow within a confined, depth-averaged aquifer. Let x = (x1,x2) represent the carte-
sian coordinate system with velocity field v satisfying Darcy’s Law. The mean flow is taken
along the direction x1. Consider a contaminant line source (width equal to wsz) perpendicular
to the direction of mean flow with fixed concentration co. The effective source width, we f f , is
defined with the aid of the continuity equation:

we f f = wsz
Qsz

〈Qsz〉 , (1)

where Qsz is the volumetric water flux passing through the source zone:

Qsz =
∫

Wsz

q1(x1,x2)bdx2 . (2)

Here, b denotes aquifer depth, q1 (x1,x2) the specific discharge passing through the source zone
and 〈·〉 the ensemble expectation. Taking the geometric source width as a given quantity in
equation (1), the randomness lies in the source efficiency denoted as η:

η =
Qsz

〈Qsz〉 . (3)

For an unbounded two-dimensional aquifer with uniform-in-the-average flow, 〈Qsz〉 is given by:

〈Qsz〉 = JTGwsz , (4)

where J is the mean hydraulic gradient in the x1 direction and TG is the geometric mean of
transmissivity. Equation 4 applies because TG is the effective transmissivity for infinite, two-
dimensional aquifers2. In addition, we can express Qsz in terms of the stream function values
that bound the edges of the geometrical source (namely, ψs and ψi). Now we can re-write
equation (3) as follows:

η =
ψs −ψi

JTGwsz
. (5)

The stochastic moments of η will follow as well as its verification with Monte-Carlo simula-
tions.
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2.2 Illustrative Example

In order to install the importance of source efficiency for predicting contaminant concentra-
tions, we first demonstrate, visually, its general impact on transport problems by performing a
Monte-Carlo transport analysis with 20,000 realizations. The physical-mathematical formula-
tion, boundary conditions and numerical implementation details are provided in the literature1.
For each realization, we computed the total volumetric flux passing through the source zone to
obtain the respective source efficiency η and the effective source width we f f . From that ensem-
ble, we extracted two subsets, one with effective source width we f f > 3/2wsz and another with
we f f < 2/3wsz. The respective concentration mean and variance fields, of the total Monte Carlo
set and extracted subsets, are shown in Figures 1.a-c and 2.a-c.

Figure 1: Impact of effective source width, see equations (1) and (3), on ensemble mean concentration (base
case scenario). Simulation results for an isotropic exponential covariance model: (a) Concentration mean of all
realizations with source efficiency larger than 3/2. (b) Same for source efficiency smaller than 2/3.

3 Stochastic Moments of Source Efficiency

3.1 Analytical Development

From equation (5), the source efficiency η results from the stochastic nature of total dis-
charge Qsz (defined in terms of the bounding stream function values) through a non-ergodic
cross-sectional area. In two-dimensional (depth-averaged) aquifers, the statistics of the bound-
ing stream function values offer a mathematically straightforward way to obtain analytical first-
order approximations to the first and second stochastic moment of effective source width9. The
mathematical development is straightforward, since well-known methods used for the stochastic
groundwater flow equation can be transferred to the corresponding streamline equation9. Since
we f f is proportional to η , we now focus on the stochastic moments of η . We start by taking the
expected value of η:

〈η〉 =
〈

Qsz

JTGwsz

〉
= 1. (6)
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Figure 2: Same as in Figure 1 but for concentration variance.

It follows that, of course, the geometric source width is the best estimate of initial plume width
in absence of site-specific data. The variance of η is expressed as:

σ 2
η =

1

J2T 2
GW 2

sz
Var [ψs −ψi]

=
2

J2T 2
Gw2

sz
Γψsψi , (7)

where Γψsψi is the stream function variogram value for the bounding values ψs and ψi. The
stream function variogram Γψsψi is evaluated at the longitudinal and transversal lag-distances r1

and r2 such that Γψsψi ≡ Γψ,2(r1 = 0, r2 = wsz). The subscript ”2” in Γψ,2 denotes transversal
direction. A formal derivation for the stream function variogram, along with the necessary
assumptions, is given in de Barros and Nowak (2010)9:

Γψ,2 (r1, r2) = T 2
GΓh,1 (r1, r2) , (8)

where Γh,1 correponds to the longitudinal hydraulic head variogram. Equation (8) reflects a
rotation of Γh,1 by ninety degrees with a scaling factor given by T 2

G . For the given lag distances
(dictated by wsz), this leads to:

σ 2
η =

2
J2w2

sz
Γh,1(wsz,0) . (9)

After replacing Γψ,2 by the head variogram Γh,1, we can draw on existing analytical solu-
tions. In our case, we will use (for demonstration) the first-order approximation8, derived for
the isotropic exponential covariance model. Figure (3) illustrates how the variance of η decays
with increasing values of wsz. Equation (9) quantifies to what degree small sources are more af-
fected by the uncertainty in we f f than wide sources. It indicates the transition to ergodic source
width (rather than ergodic plume width), where effective and geometric source width become
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almost identical (when the variance become negligible, around 100 transverse integral scales as
shown in the figure).
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Figure 3: Dependence of source efficiency standard deviation on normalized geometric source width, comparison
of analytical first-order expression and results from Monte-Carlo analysis.

3.2 Verification by Monte-Carlo Simulation

Dagan (1985)8 found that first-order approximations for hydraulic head covariances are quite
accurate even for higher variances of log-conductivity σ 2

Y . Since our solution is based on the
head variogram, we expect it to be robust even for high values of σ 2

Y . For comparison and
verification purposes, we performed an accompanying numerical evaluation by Monte-Carlo
analysis of the streamline equation. The results are taken from 20,000 realizations in a domain
sized 100λ ×100λ , at a grid spacing of 10 elements per λ . Technical details as well as choice
of parameters are provided in an ongoing work by de Barros and Nowak (2010)9. Results were
obtained for different values of σ 2

Y in order to detect the range of vailidity in σ 2
Y . The volumetric

fluxes were evaluated at hypothetical source zones of various width, placed in the center of the
domain to minimize boundary influences.

The agreement between the analytical and numerical curves for the limiting case of σ 2
Y → 0

is perfect (σ2
Y = 0.0001, results not shown here). Overall, the analytical solution is very robust
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even at values of σ 2
Y > 1. The deviations with increasing σ 2

Y are conform with recent head and
velocity statistics published in the literature: A higher variance of η for small geometrical width
coincides with the fact that the local variance of specific discharge scales more than linearly
with σ 2

Y . The sudden drop to zero close to 100 integral scales is an artifact of the bounded
numerical domain used in our Monte-Carlo analysis. The analytical result for the variance of
source efficiency reaches an asymptotic value of zero only for wsz → ∞.

4 Summary

An analytical solution for the statistics of η was formally derived up to first-order. The
solution was succesfully compared with numerical Monte-Carlo simulations. We showed how
the variance of η decreases with the geometrical source width and reaches ergodicity (wsz → ∞)
when wsz is equal to approximately 100 transversal integral scales. The obtained closed-form
solution proved robust for values of σ 2

Y far above unity.
In summary, local hydraulic conditions in the area of the area of contaminant release have

strong impact on plume characteristics. The current paper provides a simple approach to in-
crease the predictive power of existing analytical solutions. As an outlook of future work, the
analytical solution, as well as the results given here, could be particularly useful to quantify
the spreading effects due to inclusions of high (or low) permeability and are currently being
investigated9. Up to now, the observations9 are in agreement with the results published6 where
the impact of inclusions on spreading of contaminants was shown experimentally.
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