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Summary. Bioventing is a subsoil bio-remediation technique which improves the activity
of bacteria to transform contaminants into less hazardous compounds by inflating air
through wells. The mathematical model describes the bacteria population dynamics and
the dynamics of a multiphase, multicomponent fluid in porous media and in this paper a
simple version of it will be described. A critical point of the design problem is to choose
well positions and air flow rates to optimise the biodegradation process. The numerical
simulation and some initial optimisation design results for the simple model proposed will
be reported. The decontamination time required for different flow rates and for different
well spatial configurations will be compared.

1 INTRODUCTION

Bioventing is a technique used to decontaminate polluted subsoil by exploiting the
action of bacteria which biodegrade the pollutant and it is an in situ method since no soil
removal is required.

The bacteria biodegradation activity requires oxygen and air — or oxygen — circulation
is induced in the subsoil by means of injection and/or extraction wells.

The mathematical model reported in this paper provides for the presence, in the subsoil,
of air and pollutants; moreover the dynamics of the population bacteria and the pollutant
biodegradation are described. A more general model is in [10] and this paper reports a
very simple model, useful for simulation and optimal design aims.

2 THE SIMPLIFIED MATHEMATICAL MODEL

The mathematical model is based on the classical continuum approach for the fluid
flows in porous media [1], [4]; multi phase and multi component fluids are considered and
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the presence and the activity of bacteria is also described.

The following simplifying hypotheses are adopted: three different phases are present
in the system: the air gas phase, the pollutant phase and the bacteria phase. The water
phase is not considered: it is absent or, alternatively, it is present in a very small quantity
and it is supposed to be immobile. The pollutant phase is unmiscible and immobile. The
gas phase is mobile and is formed of two components, an oxygen part and a non-oxygen
part. A classical population dynamics mathematical model [8] is used to describe bacteria
diffusion and growth; we suppose that bacteria do not take up significant room in the void
space of the porous media and, therefore, their presence do not change the volume of the
pore space. Bacteria concentration is a function which depends on space and time.

2.1 Introductory definitions and notations

In order to describe the model some definitions are required: there are quantities which
only depend on the space domain and some others vary in time and space. The following
notation will be adopted:

e O(x)  is the total volume of the pore space
e O, (t,z) is the volume of the phase pollutant in the pore space
e O, (t,x) is the volume of the phase gas in the pore space

and, therefore, we have:
@ = @c + (DG (1)

Now, we can define the saturation of the gas and pollutant phases. The pollutant satu-

ration s 1 f the ph lutant @
C(t’ﬁ):VOUmGO ep asepo utan :_(v (2)

pore space volume P

The gas saturation is:

Glt,) = volume of the phase gas _ <I>_G 3)

pore space volume P

Then, the following equality holds:
C+G=1 (4)

We suppose that the gas phase consists of air only; in the air, we will distinguish two
components: the oxygen part and the non—ozrygen part. Therefore, for the air gas phase,
we denote with the space dependent variable X, (¢, x) the oxygen mass fraction in the gas

phase:
oxygen density in the gas phase

Xo (tWT) = (5)

and with the space dependent variable X} (¢,x) the non-oxygen mass fraction in the gas
phase:

gas phase density
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density of non—oxygen components in the gas phase

Xy (t,z) = (6)

gas phase density

From the definition of X, and X, in each point of the space domain we have that:
Xo 4+ Xy =1 (7)

2.2 Phase and component equations

The continuity equations and the generalized Darcy law for multi phase flow are used
to write the equations of the model. The pollutant saturation C'is an unknown and, since
pollutant is not subject to movement, we have the following equation:

0
ot ((I)Cpc) =dqc (8)
where g, is the pollutant reactive source term.

The gas phase involves four unknowns G, X, , X, and p; (the pressure of gas phase).
We have two equations, the first for the oxygen part of the air:

0 . k
ot (PGXopo) = div (Xo po —-K (grad pq )> + (9)
Hea

div (?GD, grad X,po)+qo +70o

and the second equation for the non oxygen part of the air:

% (q)GXN pN) = div (XN Pn EK (grad Pa )) + (10)
Ha

div (PGD, grad X,py)+1y

where ¢, is the oxygen reactive source term and r,, 7y represent air external source
terms.

In order to write the equation describing the bacteria population dynamics we suppose
that the micro-organisms which biodegrade the pollutant are not subject to convective
movements but they are only subject to Fickian diffusion; their growth and death are
regulated by appropriate coefficients. Thus, their spatial concentration, denoted by B
(an unknown), satisfies the following diffusion and reaction continuity equation [8]:

%B—DB AB+gB—dB (11)
where A is the Laplace operator; g and d will be subsequently defined and they represent
the microorganism growth and decay rate, respectively.
In equations (8), (9), (10) and (11) the following constant parameters appear:
K the intrinsic permeability tensor;
ke the relative permeability of the gas phase;

3
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le the dynamic viscosity of the gas phase;

pe the pollutant density ;

po the oxygen density ;

py the non-oxygen part of air density ;

D, the dispersion tensor of the oxygen in the gas phase;

D, the dispersion tensor of the non oxygen part in the gas phase;
Dy the bacteria diffusion coefficient;

In bacteria equation (11) we assume that d — the death rate — is a positive constant:
it means bacteria death proportionally to their concentration in each point of the spatial
domain.

In order to define the growth rate g in equation (11) we assume that bacteria grow only
where both oxygen and hydrocarbon are available and, also, their spatial concentration
is subject to a logistic type limitation. Then, ¢ is based on the product of three factors:

ﬁc C’T ﬁo OT Bmaz - B

9GO = e Ky 7 0r  Bom

(12)

where C; = ®p.C denotes the pollutant spatial concentration and O, = ®p, X, G
denotes the oxygen spatial concentration. The first of the three factors in (12):

Bo Cr

1
K. +C; (13)

is of Monod type and it becomes zero as C; approaches zero. The constant G, is the
hydrocarbon asymptotic mazximum specific growth rates, that is for large values of C
the factor tends to (.. Moreover in (13) K. denotes the pollutant half specific velocity
constants : for C; = K, then (13) assumes the value (. /2. The second factor in (12)
is the oxygen Monod term and the oxygen asymptotic maximum specific growth rates (3,
and the oxygen half specific velocity constants K, play, in that factor, the same role as
B and K. in the first factor. The third term in (12) is a logistic limiting factor: when B
increases and tends to B,,,, then the factor tends to zero: B,,,, represents the maximum
bacteria spatial concentration supported by the environment.

For a complete description of the equations (8) and (9), it is necessary to define their
reactive source terms. During the decontamination intervention the spatial concentration
of pollutant and oxygen change and the terms q., g, in (8) and (9) give a modelling de-
scription of the phenomenon. We suppose that part of pollutant and oxygen are converted
into bacteria cell mass that is, in a time unit, in each point of the domain an increase of
B corresponds to a decrease of C' and O. Moreover, oxygen and pollutant are used in the
microbial endogenous metabolism, that is, in a time unit, in each point of the domain the
presence of B consumes C' and O. Then the pollutant decay term in (8) is:

1
ge = ——g(Cy,0,)B — M, 0, Cy B (14)
Y.
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where the function g(Cy, Oy ) is defined in (12); the constant parameters Y, and M. are
the hydrocarbon yield coefficient and metabolic consumption constant, respectively. In (9)
the oxygen reactive decay term is:

1
qo :_Y_{Q(CT;OT)_d}B_MOOTCTB (15)
o

where Y, and M,, are, respectively, the oxygen yield coefficient and metabolic consumption
constant. The presence of the constant d in (15) means that when bacteria die, some
oxygen is released into the environment.

In (9) and (10) r,, and ry are time dependent external gas source terms. They represent
the air injection or extraction wells and they are defined in all the points of the spatial
domain of the model and vary in time. We have:

ro = pX(x,t) and ry = (1 —p)X(x,1) (16)

where p is the oxygen fraction of the air in the atmosphere and X(x,t) is the time and
spatial domain dependent function describing the source air flow. In particular, in order
to represent wells located in a fixed finite number of points in the space domain, the
function Y(x,t) assumes the following form:

N

S t) =pe Y Qi(t) oz — ;) (17)

i=1

where the x; (i = 1,...,N) are the spatial positions of the wells. The function 4(-) is
the Dirac delta function and, for ¢ = 1, ..., N, (); is the volumetric flow rate of the well
in position x;; a positive value of @); indicates an injection well and a negative value
indicates an extraction well. The constant p. is the gas phase density and it is defined
as pe = po Xo + py Xy

In conclusion, the simplified mathematical model is formed by the spatial time evolution
equations (8), (9), (10), (11) and from the relations (1),(4). The unknowns are C, G, X, ,
Xy, pe and B.

3 SIMULATION RESULTS

The simulation experiments reported in this paper do not refer to a real case but they
are useful for verifying the functionality of the model. We suppose that the spatial domain
is a two dimensional circular domain with radius 75 and centered in (75, 75); therefore,
from the modelling point of view the injection wells are point sources (see eq. (17)). In
practice, in the simulation, the wells are treated as small hole inside the domain, with
assigned flow boundary conditions.

In the computations, further reductions are introduced in comparison with the model
shown in Section 2: we suppose that the pollutant saturation is relatively small compared
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with the gas saturation and, therefore, G(¢,xz) = 1. Moreover, if we suppose that pure
oxygen is inflated in the subsoil, then X, = 0 and equations (9) and (10) can be substi-
tuted by the single oxygen equation (9) with X, = 1. In this situation the classical ideal
gas state law permits expression of the gas pressure p; in terms of p, : so in the equation
(9) the only unknown remains p, .

Therefore, the model is reduced to a system of three partial differential equations of
reaction diffusion type describing: pollutant, oxygen and bacteria spatial evolution; the
three equations are only coupled by the source reactive terms. The system has been solved
using the software COMSOL Multiphysics© (transient analysis of the diffusion module).

In all simulations the soil characteristics — porosity and permeability — are homogeneous
isotropic and constants; the initial spatial distribution of the pollutant is:

_(2-65)24(y—75)2 _ (2-85)% 4 (y—75)2
225 225

Co(z,y) = 10e + 10e (18)

The initial bacteria concentration is 0.1 uniformly in the spatial domain and the ini-
tial spatial oxygen concentration is zero. For bacteria, oxygen and pollutant, zero flux
boundary conditions are considered. The following values are assigned to the constants
in the reactive terms: 6. = 06, = Ko = K, =1, Bpoe = 1,d=001,Y, =Y, =1,
M, =0.08, M, = 0.01.

We will define the decontamination time as the time required to reduce the pollutant
subsoil concentration to below a fixed required level in all the points of the domain: that
is we will control the maximum concentration value in the spatial domain.

Starting from some fixed initial conditions, the decontamination times corresponding
to different well configurations and/or flow rates have been compared. In particular three
significant experiments are reported; we suppose that it is required to reduce the pollutant
concentration to below a level of the order of 1072, Figure 1 shows the spatial pollutant
concentration before the decontamination intervention. In the first experiment only one
injection well with flow rate equal to 50 is located in the center of the circle and the time
required to achieve the pollutant security level is ¢ = 391 and Figure 2 shows the spatial
pollutant concentration at time ¢t = 391. The second experiment is similar to the first
but the flow rate is equal to 100 and the decontamination time is ¢t = 293, see Figure 3.
In the third experiment two injection wells are located in (65,75) and (85, 75) each one
of them with flow rate equal to 50 and the decontamination time is ¢ = 237. For this
experiment Figures 4, 5 and 6 show pollutant, bacteria and oxygen spatial concentrations,
respectively. Comparing the first and the second experiment we can see that there is a
reduction in the decontamination time of one third but the flow rate is doubled. In
the third experiment there is a time reduction using the same flow rate as the second
experiment.

4 CONCLUSIONS AND FINAL NOTES

In this paper a simple mathematical model for a bio-remediation system has been
described and the results of some simulation have been reported.
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Figure 2: One well: final pollutant
Figure 1: Initial pollutant concentration concentration, flow = 50
TIME = 293 Max: 0.0111 TIME = 237 Max: 0.0112
0.01 0.01
0.008 0.008
0.006 0.006
0.002 0.002
0 0
Min: -1.748e-3 Min: -1.254e-3
Figure 3: One well: final pollutant Figure 4: Two wells: final pollutant
concentration, flow = 100 concentration, total flow = 100

In different situations, the times required for the decontamination intervention have
been compared: in this case the minimization of the intervention time — with assigned
limited resource, that is the total flow rate — is considered to be the design objective.
Other choice are possible for the design objective: minimising the cost and so on.

As regards the model used in the simulations, further developments are: to simulate
the complete model exhibited in section 2 and to consider a non-homogeneous subsoil.
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