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Summary. We review a recently-proposed method for quantifying internal structures
of porous and granular materials in two and three dimensions. The method offers a
systematic way to derive relations between the microstructure of such materials and their
bulk properties. Preliminary results are presented for planar granular packs.

1 INTRODUCTION

The intricate pore structure of porous materials plays an essential role in determining
their bulk behaviour. The key to understanding and predicting macroscopic properties of
such materials, such as their transport properties, is by establishing structure-property
relations – one of the holy grails in the field. The main problem has been that the
large separation in length-scale between the pore size and relevant macroscopic behaviour
hinders simple homogenisation techniques that start from the pore structure. As a result,
the literature is littered with heuristic approaches, all with respective advantages and
disadvantages.

To address this problem, a systematic method has been proposed to bridge between
the scales2−6. The method comprises a programme that consists of several steps. The
novelty lies in two key steps: quantification of the local structure, followed by a statistical
characterisation of it, based on a statistical mechanical formalism. The latter allows us to
compute physical properties on the mesoscale, which can be then used as objective input
into network models. The method allows us to quantify global structural characteristics

1



R. Hihinashvili and R. Blumenfeld

in terms of local microstructural descriptors, and relate the structure to macroscopic
physical properties, such as permeability, reactivity, solid-pore heat exchange, etc.

The quantification of the pore structure is carried out by dividing the pore space into
elementary volumetric entities, called quadrons, whose shapes can be described by a shape
tensor. A brief account of the construction of these entities is given in two and in three
dimensions (2D and 3D). In 3D we focus, for illustration, on quadrivalent structures,
where four edges meet at every vertex. The quadrons are used as ’quasi-particles’, whose
configurations can be treated entropically. Using then the powerful tools of conventional
statistical mechanics, we can derive structural properties as expectation values over a
certain partition function. The method is used initially on skeletons of porous materials.
Nevertheless, the statistical mechanical approach allows us to extend the analysis to real
’thickened’ structures.

We present preliminary results from the quantification of the microstructure of a planar
dense granular pack. These include a distribution of the quadron areas and some condi-
tional distributions related to it. In addition we consider the distribution of parameters
that indicate the shape of the quadrons.

2 QUANTITATIVE DESCRIPTION OF THE PORE STRUCTURE

Given an image of a porous material, the first step is to reduce the solid phase into a
skeletal representative. Such a skeleton forms a cellular structure – a collection of vertices
(points) in space, with each vertex connected by edges, straight or curved, to adjacent
vertices (e.g. the dotted lines of the 2D skeleton sketched in figure 1a). In this section, we
review briefly the microstructure quantification method, on which our scheme is based.
While our main interest is in 3D systems, it is insightful to describe the method first for
planar systems.

2.1 Two dimensions

Consider a two dimensional skeleton, as in Fig. 1a. First, we determine the midpoints
of the edges between vertices. We then join the midpoints by vectors rcv that circulate
around every vertex in the clockwise direction (forming polygons). Conversely, these
vectors circulate around voids (cells) anticlockwise. We define the centroids of vertex and
cell polygons as the arithmetic means of the positions of their corners. From the centroid
of a vertex polygon, we extend vectors Rcv to the centroids of adjacent cells (see Fig.
1a). This results in two mutually reciprocal networks spanning the entire system – the
r-network and the R-network.

Each rcv-Rcv pair forms a quadrilateral, of which they are the diagonals. The quadri-
laterals, named quadrons2, 3, offer a new way to characterize cellular (and granular, see
below) structures. A key observation is that the quadrons tile the system. For brevity, we
index the quadrons by q rather than cv. The quadron shape and geometry are quantified
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Figure 1: Structural characterization of planar systems: (a) A 2D skeleton of a porous material. Locate
the midpoints on the edges that join the vertices. Join adjacent midpoints by vectors r

cv, circulating
clockwise around vertices and anticlockwise around cells. The centroids of vertex polygons and cell
polygons are the mean positions of their respective corners. From a vertex centroid extend a vector
R

cv to the centroid of an adjacent cell. Each pair r
cv-Rcv forms a quadrilateral, of which they are the

diagonals. The quadrilaterals, called quadrons, tile the plane. (b) The same construction can be used
for granular packs: the edge midpoints map onto the inter-granular contact points and the r

cv vectors
circulate around grains.

by a local shape tensor2, formed by the outer product

Cq = (ε̂rq) ⊗ Rq (1)

where ε̂ = ( 0 1
−1 0 ). Since the quadrons tile the plane, the volume of the system can be

expressed as the sum of their areas, V q:

W =
∑

q

V q =
∑

q

1

2
TrCq =

∑

q

1

2
(rq × Rq) (2)

Being the elementary volumes makes the quadrons very useful for the statistical approach
reviewed below (see Sec. 3).

While there is a number of ways to tessellate porous materials, the method described
here has several advantages. One is that, unlike Voronoi tessellations, the quadrons are
all quadrilaterals, making possible an unambiguous structural description in terms of the
shape tensor. Another advantage, especially significant for granular systems (see below),
is that the quadron construction is based on the physical connectivity of the structure - a
feature that is lost by Voronoi-based methods. A third important advantage is that this
method allows us to enumerate the degrees of freedom required to define the structure.
This feature is significant for the construction of the statistical formalism described later.
In 2D, the total number of quadrons coincides with the total number of degrees of freedom,
allowing us to use quadrons as elementary ’quasi-particles’. The number of degrees of
freedom is related to the number of the independent rq vectors and, in 2D, it is equal
to Nz̄v, where N is the total number of vertices and zv is the mean number of edges
connected to a vertex (mean coordination number)4, 5.
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The same construction can be applied to granular packs2, 4, where the vertices cor-
respond to grains and edge midpoints are replaced by the grain contacts (see Fig. 1b).
Joining adjacent contact points around a grain results in the same construction as for
skeletons of porous media, with r-vectors circulating clockwise around grains and anti-
clockwise around voids. This mapping unifies the description of the structures of both
types of systems.

2.2 Three dimensions

The rationale is the same as in 2D. First, one identifies the midpoints of the edges
between vertices. Then, around each vertex, adjacent midpoints are joined by vectors to
form a polyhedron, e.g. the tetrahedra as in Fig. 2a. The vectors circulate clockwise
around a triangle when viewed from the vertex outward. The faces of the polyhedra are
all triangular. The joining of edge midpoints also results in the formation of surfaces that
enclose cells (pores). Such a surface comprises interconnected triangular faces, belonging
to adjacent vertex polyhedra, and skew-polygonal faces, enclosed by these triangles (see
figures 2 and 8 in ref. 6). Each skew polygon is shared between two cells, constituting the
’throat’ between them. We next construct quadron volume elements. The quadrons are
non-convex octahedra, each containing local information on a cell, a vertex polyhedron
and a polygonal throat. The construction of a quadron is illustrated in Figs. 2a-f for
quadrivalent structures and explained in detail in the caption.

A 3D quadron is defined by three vectors: rq – the edge shared by the triangular face
and the skew polygon p; ξq – a vector extending from the centroid of the triangular face
of the polyhedron to the centroid of polygon p; Rq – a vector extending from the centroid
of the vertex polyhedron to the centroid of an adjacent cell. The quadron shape tensor is

Cq = (ξq × rq) ⊗Rq (3)

and the volume of a quadron is V q = 1
6
TrCq = 1

6
(ξq × rq) · Rq. By construction, the

quadrons tessellate the space and their combined volume is the volume of the system.
Unlike in 2D, there are more quadrons (12N , in quadrivalent structures) than degrees of
freedom (∼ 5.5N) 5.

3 STATISTICAL MECHANICS OF GRANULAR ASSEMBLIES

It has been suggested3 to extend the Edwards entropic formalism for granular packs1 to
cellular structures. The formalism, based on statistical mechanics, assumes that macro-
scopic cellular structures have a huge number of possible configurations (microstates). A
configuration is defined by the positions of vertices, the connectivity, the shape of cells,
etc. and it is specified by a set of variables, called the degrees of freedom.

The probability of a microstate depends on the volume occupied by the system in the
corresponding configuration. It is expressed in terms of a Boltzmann-like factor, e−W/X ,
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Figure 2: The construction of a quadron, e.g. in tetrahedral structures. (a) Three representative vertex
tetrahedra, on the boundary of cell c. (b-c) Determine the centroids of the triangular face of the tetra-
hedron (shaded) and of the polygonal face p. Extend two lines from each of these to the tips of the edge
shared by the triangle and the polygon, r

q. This gives generically a skew (non-planar) quadrilateral.
(d) Determine the centroid of the vertex tetrahedron and extend from it four lines to the corners of the
skew quadrilateral of (c) to form a quasi-pyramid. (e) Determine the centroid of the cell and from it
extend also four lines to the corners of the skew quadrilateral; this forms another quasi-pyramid that
shares its base with the one constructed in (d). (f) The union of the two quasi-pyramids is a non-convex
octahedron; this is the 3D quadron (figure curtesy of 3).
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where W is a volume function, giving the volume of the system, and X is a multiplier,
analogous to the temperature in thermal systems, called compactivity. In granular packs,
the compactivity is a measure of the porosity of the system.

A partition function is then defined,

Z =

∫

e−W({η})/XΘ({η})D{η} (4)

where {η} denotes the degrees of freedom and the integration is over all possible config-
urations within a given ensemble. W depends on the degrees of freedom {η} and Θ({η})
rules out inadmissible configurations (e.g. which are not in mechanical equilibrium). The
benefit of this approach is that it allows to calculate structural macroscopic properties as
expectation values over all possible configurations. The expectation value of a property
f is

〈f〉 =
1

Z

∫

f({η})e−W({η})/XΘ({η})D{η} (5)

For example, 〈f〉 could be the ’throat’ mean size, its mean size fluctuations and other
structural quantities which are important to compute local permeability and construct
equivalent networks. It could be the total polyhedral surface area, which is important to
estimate reactivity, catalysis, solid-pore heat exchange and other properties.

To use this approach, one needs to have a useful form of W. The method described in
Sec. 2 provides it, W =

∑

q V q, with {η} being (a subset of) the vectors rq. Then the
partition function becomes

Z =

∫

e−
P

q V q/XΘ({rq})

Ndof
∏

q=1,i=x,y,z

{drq
i } (6)

where Ndof is the number of degrees of freedom. Since, in 2D, the number of quadrons
coincides with the number of degrees of freedom we can use their volumes as degrees of
freedom. Using an ’ideal quadron gas’ approximation2 allows us to evaluate the partition
function:

Z =

(
∫

g(V q)e−V q/XdV q

)Nq

(7)

Here, g(V q) is the density of states – the frequency of states where a quadron’s volume is
in the interval (V q, V q + dV q) and Nq is the number of quadrons.
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4 A DENSE PLANAR PACK

To test the method, illustrate some of its uses and provide insight into 3D structures,
we first analyse a 2D system. Already the quantification of the pore structure is beneficial
for characterizing porous materials and comparing between different types of structures.
However, more significantly, the combination of the quantitative structural description
and the statistical mechanical approach provides a way to derive relations between the
pore structure and bulk physical properties of porous and granular materials8.
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Figure 3: Quadron area distribution in a 2D dense granular pack (bars) and conditional distributions
(superimposed curves). Here, 〈R2〉 is the average grain radius, and zc is the cell (void) order.
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Figure 4: Additional distributions: magnitudes of the r
q vectors and the cosine of αq – the angle between

r
q and R

q.

Here we report preliminary results on the distributions of the various variables related
to the quadrons in dense 2D granular packs. The grains are polydisperse discs and the
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pack is made very dense – over 80% of the voids have only 3 grains around them (zc =
3). We have studied both the total distribution of quadron areas (bars in Fig. 3) and
the conditional area distributions, given that a quadron belongs to a cell of zc sides
(superimposed curves in Fig. 3). The latter is motivated by the results of Frenkel et al 4

that these conditional distributions are independent of pack preparation, while the total
distribution is not. Unlike Frenkel et al, our total distribution has no shoulders, which
is a result of the location of the peaks of the conditional distributions for zc > 3. This
already shows a significant difference between the packs studied there and the one studied
here.

We have also studied the magnitudes of the vectors rq and the angles αq between rq-Rq

pairs (Fig. 4). As expected7, the distribution of αq is narrowly and roughly symmetri-
cally peaked around π/2. We are currently extending the above analysis to a family of
3D skeletal structures.
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