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Summary: The goal of this work is to study the wind-induced circulation in the Bay of
Biscay using a stabilized 3-dimensional finite element model, HELIKE*?. This model is
based upon the incompressible Navier-Stokes equations for geophysical fluids. It uses the
Coriolis acceleration, turbulence, bottom friction, wind stresses, density gradient (baroclinic
term) and free surface height (barotropic term). The latter is obtained by means of a kinematic
equation, without the need of height-averaging. A stabilization method allows for the use of
the same shape functions for velocity and pressure.

1 NUMERICAL MODEL

1.1 Basic Equations

Helike is numerical model for solving the Navier-Stokes equations via the finite element
method. Even though its primary use is in oceanographic applications, it can be used as a
general purpose CFD code with the proper parameters. The model solves the equation system
for pressure and velocity components, and uses these in the decoupled free-surface equation.
Consider the incompressible Navier-Stokes system:
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Where u, v and w are the velocity components; p is the pressure; vy and w are the
horizontal and vertical diffusion coefficients; 7 is the free surface height and k are the coriolis
acceleration components.

1.2 Boundary Conditions

Different boundary conditions are imposed on our domain, depending on the simulation we
are running. In this paper we will only mention those concerning our study. If the 3-
Dimensional domain is decomposed in three parts we have:

L=5x0 (Surface)
I, = (63, 2) € R/ (x,9) €S, ~H(x,y) = 2} (Bottom)
I, ={(x,y,2) € R¥/(x,y) €3S, —H (x,y) < z < 0} (Lateral boundary)
The boundary conditions applied to these parts of the domain are:
Impermeable bottom:
oH  OH “)
w+ua—+va—=00n Iy
Tangent Wind Stresses:
vy (g—z,g—:) = (%,77) = % C (U2, VE)/2(Uyp, Vio) on T (5)

where p; is the air density, Cs is the wind drag coefficient and (Uy, V10) are the wind
velocity components 10m. above the sea surface. Also a Zero normal stress condition is
imposed on the surface:

w (6)
vy Frin OonT;
Inflow on walls:
u=u;onl; Y

where u; is the inflow velocity.

Zero normal velocity on lateral walls:
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nyu+n,v=00nTl, ®)
Finally, initial velocity and free surface conditions are imposed in the linear case:

u(x,y,z,0) = uo (x,y,2),¥(x,y,x) € Q )

and
n(x,y,0) =n(xy), V(xy)€er (10)

1.3 Numerical Approximation

After applying boundary conditions, we multiply the equations by test functions and
integrate over the whole domain to obtain the following:

Velocity-Pressure system:

f A utid) + j (u - VuiidQ + j (k x WadQ + f VpiidQ (11)
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Continuity equation:

f (V-v)Gd =0 (12)
Q
Free Surface Equation:
oaidr + [ wounr,+ [ voynar, = [ war, (13)
Ts Ts Ts Ts

1.4 Stabilization Method

The goal of the stabilization method is to stabilize the pressure ®. The idea is to introduce,
as a new unknown of the problem, the projection of the pressure gradient onto the velocity
space and to add to the incompressibility equation the difference between the Laplacian of the
pressure and the divergence of this new vector field.
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The new unknown is the projection r*1 = (r+1, rJ*1, r2*1) in L%(£2) of the pressure
gradient Vg, weighted in each element by the parameter/a,. This new equation is written as:

f 15, dQ — Z f Jag Vgrtts,d =0 (14)
0 K

KeQg

where 3! is the projection of the pressure gradient; ay is an element wise stabilization

parameter; fﬂ denotes the integration over each element of the domain; and K refers to the
elements of the mesh. The weak form of the equation is:

f (V- upth)g,da + Zf axVqrtivg,dQ — Zf Jagrttivg,da (15)
) ) )

KEeQy KeQg

The coefficient ay is obtained with this expression:
ag = cl+c&+l B VK € (16)
K YhZ T Ph  At)

where hy, is the element size; 1} is a characteristic element velocity and the constants are
c,=12andc, = 6"

1.5 Turbulence closure models
1.5.1 Horizontal turbulent viscosity

Two models are used for the horizontal turbulence, constant values and the Smagorinsky
parameterization. In the latter, the horizontal coefficient w, is defined as:

Vh = CmohxhyDT (17)

where ¢, is an adimensional viscosity coefficient, h, and h, are the size of the horizontal
discretization in the X and Y direction and:

1/2
Dr = (@0 + @,0)? +3 (B,u + 0,0)") (18)

is the magnitude of the velocity of the strain tensor.
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1.5.2 Vertical turbulent viscosity

Besides the constant value for the vertical turbulence coefficient, three models are used
which are based on the Richardson number:

R, = N?/M? (18)
where N2 = —pig—’z’ is the frequency of the vertical oscillations and M2 = (2—’2‘)2 + (g—'z’)z is
The majority of the models used depend on an algebraic expression that is written as:
(19)

vy = Vo +v/(1+BR)"

Depending on the values chosen for v;, v, nand £, these models are known as
Pacanowsky-Philander®, Gent®, and Munk & Anderson’.

2 IMPLEMENTATION AND APPLICATION TO CIRCULATION IN THE BAY OF
BISCAY

2.1 HELIKE Numerical Model

The Helike model consists of two parts. The first part is the pre and post processing
software GID, which allows us to build the model geometry, apply boundary conditions and
run the calculation with a very user friendly GUI. After the calculations have been performed,
the results can be viewed in the GID's post processing mode. The second part is the core of
the model, which implements the formulation described in section 1 using FORTRAN
programming language and writes the results to files that can be read by GID.

This system has many advantages. The most important is the finite element formulation, as
it permits us to deal with problems of a complex geometry. Also, we note the use of a
kinematic free surface equation. Besides, the coupling of the FORTRAN code with GID saves
the user from learning complex programming concepts, and only focus on the physical and
numerical aspects of the problem.

2.2 Domain of Study

The circulation in the Bay of Biscay it caused mainly by the winds and the variability of
the density 2°. In this study we will only consider the influence of the wind.
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Figure 1. Northern coast of Spain. The rectangle shows our domain of study.

The region being studied is located between the longitudes 1 and 4 W, and the latitudes
43N and 44N. The mesh consists of 16875 nodes and 11208 prismatic elements. The meshing

process begins with a surface mesh, which is then projected to the bottom to create the
volumetric mesh.
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Figure 2. GID user interface. Mesh of the domain of study

2.3 Forcing data and boundary conditions.

The wind velocity vectors have been interpolated for each node of the mesh in an hourly
basis, the total simulation time is 48 hour. The period of time from 15-16/11/2008 has been
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chosen because it shows enough variability to test and calibrate our model. We also use a
stationary velocity field obtained by applying a constant wind field in the surface. We have
used an implicit time integration scheme, solving the systems of equations via the conjugate
gradient method.

2.4 Results and conclusions.

We have presented a numerical model to solve the Navier-Stokes equations and applied
this to the study of the wind induced circulation in the Bay of Biscay. This model incorporates
wind data from Meteogalicia operational models and uses it to calculate the wind friction on
the surface.

Our future research will be directed towards the development of an operational model.
We'll incorporate values from actual measures (atmospheric pressure, density, free surface)
and other models such as ROMS™. Also a major concern is to speed up the calculations by
means of implementing new time integration schemes and the use of parallel solvers.
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Figure 3. Contour fill of the velocities on the surface at 15/11/2008, 3:00 pm.
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