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Summary. The treatment of advective fluxes in high-order finite volume models is well 

established, but this is not the case for diffusive fluxes, due to the conflict between the 

discontinuous representation of the solution and the continuous structure of analytic solutions. 

In this paper, a Derivative Reconstruction approach is proposed in the context of Spectral 

Volume methods, for the approximation of diffusive fluxes, aiming at the reconciliation of 

this conflict. The method is demonstrated by a number of numerical experiments, including 

the solution of Shallow-water Equations, complemented with the advective-diffusive transport 

equation of a conservative dissolved substance. 
 

 

1 INTRODUCTION 

The increasing interest of public audience and researchers towards environmental problems 

has prompted the study and the design of numerical models able to simulate the transport and 

the fate of constituents and pollutants in surface water bodies. For instance, numerous finite 

volume models for the solution of the Shallow-water equations, coupled with the passive 

transport of a constituent, at most second-order accurate in time and space, are already 

available in literature, based on different approaches. The treatment of advective fluxes in 

high-order finite volume models (Spectral Volume, ENO, WENO among the others) is well 

established, and the discontinuous representation of the solution can naturally accommodate 

for the discontinuities of the true solution. Conversely, high-order treatment of diffusive 

fluxes can be difficult in finite volume models, in that the discontinuous representation of the 

solution conflicts with the analytic solution, which is always continuous. Recently, numerous 

approaches have been adopted for the calculation of diffusive fluxes in the context of Spectral 

Volume method, namely the LSV approach
 
and the Penalty SV by Sun and Wang

1
, the 

Penalty SV approach by Kannan and Wang
2
. These methods exhibit one or more of the 

following problems: lack of symmetry, lack of compactness, sub-optimal order of 
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convergence. Especially the first two problems stressed above can decrease the convergence 

speed of algorithms in the case of implicit time-marching methods. Starting from these 

considerations, in this paper we present a numerical model for the solution of the one-

dimensional Shallow-water Equations 
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coupled with the equation for the passive transport of dissolved substances, which takes into 

account also the diffusion of constituents: 
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In the equations (1) and (2) the following definitions hold: x = space independent variable, t = 

time independent variable, zb(x) = bed elevation, h(x,t) = water depth, U(x,t) = vertically 

averaged flow velocity, C(x,t) = vertically averaged constituent concentration, g = gravity 

acceleration constant, D(x,t) = dispersion coefficient. We observe that the system of equations 

(1) is hyperbolic, while the coupling of (1) and (2) leads to an advection-dominated parabolic 

system of equations. 

The numerical model presented in this paper, which is high-order accurate far from 

discontinuities of the flow field, is based on the Spectral Volume Method, and applies the 

HLLC approximate Riemann solver to evaluate the advective fluxes at the interfaces between 

the spectral cells. In order to ensure the C-Property, the source terms are upwinded at the 

interfaces, after a so-called “hydrostatic reconstruction”. The diffusive fluxes are calculated 

using a novel approach, called Derivative Recovery Spectral Volume (DRSV), which is 

linked to the Derivative Recovery Method
3,4

 and to the Direct Discontinuous Galerkin
5
, 

recently introduced for the diffusive fluxes calculation in Runge-Kutta Discontinuous 

Galerkin methods (RKDG). The DRSV exhibits good properties, namely high-order accuracy, 

local symmetry and compactness of the numerical stencil. A number of preliminary numerical 

experiments are reported, showing the promising capabilities of the method. 

2 THE NUMERICAL METHOD 

In this section the Spectral Volume Method
6
 for hyperbolic systems of differential 

equations is briefly reviewed, then the Derivative Recovery Spectral Volume is introduced for 

the solution of parabolic problems. Finally, it is shown how these approaches are applied for 

the solution of the one-dimensional Shallow-water Equations, complemented with the passive 

transport of a constituent. 

2.1 The Spectral Volume Method for hyperbolic equations 

Let’s consider a system of hyperbolic equations of the form: 
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where u is the vector of conserved variables, f(u) is the vector of physical fluxes and s(x,u) is 

the vector of source terms. In order to apply the Spectral Volume Method, the computational 

domain is partitioned in NS non-overlapping cells named “spectral volumes” or “spectral 

cells”, indexed by i: the generic spectral cell is defined by Si = [xi-1/2, xi+1/2]. Each spectral cell 

is in turn partitioned in k non-overlapping finite volumes: the generic finite volume Vi,j 

contained in the spectral volume Si is defined by Vi,j = [xi,j-1/2, xi,j+1/2], and its length is ∆xi,j = 

xi,j+1/2 - xi,j-1/2. We observe that the following obvious congruency conditions hold: xi,1/2 = xi-1/2 

and xi,k+1/2 = xi+1/2. If equation (3) is integrated in each finite volume Vi,j, the following 

systems of ordinary differential equations is obtained: 
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where ui,j is the cell averaged value of the vector of conserved variables in Vi,j, Fi,j+1/2 is the 

vector of numerical fluxes through the interface xi,j+1/2 between Vi,j and Vi,j+1, si,j is the vector 

of numerical source terms in Vi,j. In order to evaluate the terms at the right-hand side of 

equation (4), the conserved variables are reconstructed in each spectral cell Si by means of a 

piecewise polynomial conservative reconstruction ui(x) of order p = k - 1, which ensures that 
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The reconstructed variables are used to evaluate high-order approximations of source 

terms in finite volumes, and fluxes at the interfaces: after evaluation of the right-hand side of 

equation (4), a system of ordinary differential equations is obtained, and a high-order Runge-

Kutta scheme is used to make the solution march in time. We observe that the conserved 

variables and fluxes can be discontinuous passing through the interface between two finite 

volumes, after variables reconstruction: in this case, the numerical fluxes are calculated by 

solving the local Riemann problem. 

2.2 Derivative Recovery Spectral Volume for diffusive fluxes calculation 

When applying the Finite Volume Method on uniform grids, in order to approximate the 

solution of the diffusion equation 

2

2

x

u

t

u

∂

∂
=

∂

∂
, [ ] 0;;0 >∈ tLx , (6) 

the following second-order accurate scheme is often used 
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where ui is the averaged value of u(x) in the finite volume Vi, and ∆x is the length of the finite 
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volumes. The finite volume scheme (7) is analogous to the finite difference scheme for the 

diffusion
7
, where ui should be intended as the approximation of u(x) at the location xi, and for 

this reason it is sometimes called “finite difference approach”. Of course, the equation (7) can 

be derived in the context of the Finite Volume Method: having defined the flux F=-∂u/∂x, the 

application of the Finite Volume Method to the Equation (6) allows to write, for each finite 

volume, the equation 












−

∆
−=

−+
2

1

2

1

1

ii

i FF
xdt

du
, (8) 

where Fi+1/2 is a consistent approximation
8
 of the flux F(xi+1/2) between the finite volumes Vi 

and Vi+1. In order to evaluate Fi+1/2, it can be observed
3
 that a conservative reconstruction of 

the solution u(x) on the stencil Vi,i+1=Vi∪Vi+1 is 
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which very naturally supplies: 
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So, a good approximation of F(xi+1/2) = - ∂u/∂x is Fi+1/2= - (ui+1 – ui)/∆x, and the scheme 

(7) is obtained. The concept can be generalized to the case of the Spectral Volume Method. In 

order to evaluate the diffusive flux Fi,k+1/2 between the spectral volumes Si and Si+1, we 

consider the stencil Si,i+1=Si∪Si+1, which consists of 2k finite volumes: in this stencil, the 

solution can be reconstructed by means of a polynomial ui,i+1(x) of order p=2k-1, and this 

polynomial can be used in turn to supply a high-order approximation of F(x)=-∂u/∂x at the 

interface between the two spectral volumes. The diffusive fluxes are needed also for internal 

interfaces: the arithmetic average 0.5[ui-1,i(x)+ ui,i+1(x)] of the reconstructions ui-1,i(x) and 

ui,i+1(x) supplies a 2k accurate approximation of the solution u(x) in the spectral volume Si, 

which can be used for the evaluation of ∂u/∂x at internal faces. It is clear that, on irregular 

grids, the expected nominal order of accuracy is p=2k-1. Moreover, we observe that the 

DRSV method is compact, in that the diffusive fluxes through the external and internal 

interfaces of the spectral volume Si depend solely on the variables conserved in the finite 

volumes of the cells Si-1, Si and Si+1. In order to make an example, we observe that in the case 

of k=2 and uniform grid with spectral volumes of length ∆x, the following scheme is obtained: 
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2.3 Spectral Volume Shallow-water Equations model with constituents transport 

The Spectral Volume Method can be applied for the solution of equations (1) and (2). 

First, the conserved variables h, hU, hC and zb+h are reconstructed in each spectral volume, 
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then the HLLC approximate Riemann solver is used to evaluate the advective fluxes at the 

interfaces between the spectral cells (see Section 2.1). The TVBM limiter
9
 is used to limit the 

reconstructions near shocks, ensuring the algorithm stability. In order to enforce the 

equilibrium in steady-state calculations, the source terms must balance the advective fluxes 

(C-Property): aiming at this, the source terms are subdivided into in-cell contribution and 

interface contributions, then the interface contributions are upwinded
10

 following the so-called  

“hydrostatic reconstruction”. For the integration of the in-cell source term contribution, the 

Romberg formulas are applied. Diffusive fluxes are calculated by recovering the derivatives 

of h and hC, and applying the DRSV approach (see Section 2.2). After the evaluation of 

fluxes and source terms, a system of ordinary differential equations is obtained, whose 

solution is approximated by means of the third-order TVD Runge-Kutta scheme. 

3 NUMERICAL EXPERIMENTS 

In this section, the numerical scheme is demonstrated by means of numerical experiments. 

3.1 Diffusion of a sinusoidal wave 

In the first numerical experiment, an accuracy test is carried out considering the 

approximate solution of the following equation: 

2

2

x

u
D

t

u

∂

∂
=

∂

∂
, [ ] 0;2;0 >∈ tx π , (12) 

with sinusoidal initial conditions: 

( ) ( ) ( )xxuxu sin0,0 == , [ ]π2;0∈x , (13) 

and periodic boundaries conditions. The problem admits the exact solution 

( ) ( )xetxu Dt sin, −= . (14) 

The value D=1 m
2
/s has been chosen. In order to generate a non-uniform grid for this 

numerical test, the following technique has been adopted: the computational domain, L=2π 

long, has been first subdivided in NS uniform spectral volumes, each ∆x=L/NS long, then the 

interface between two spectral volumes has been moved by the distance 0.1∆x to the left or to 

the right, randomly. The fluxes between the finite volumes have been calculated using the 

DRSV approach, while the time-marching method used is the third-order TVD Runge-Kutta 

method. The numerical solution has been computed up to t = 1 s, with time step ∆t small 

enough in order to consider the time error negligible. 

The test has been repeated for k = 1, 2 and 3 finite volumes per cell, and for increasing NS. 

The L∞ and L1 norms of the error, calculated with reference to the finite volume-averaged 

values of u, are presented in Table 1: from inspection of Table 1, it is apparent that the 

convergence order of the DRSV method is greater than the nominal value 2k-1, and very close 

to 2k. Notice that, for k = 3 and NS = 40, the spatial error is proportional to 10
-10

, and the time 

error dominates. 
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NS=5 NS=10 NS=20 NS=40 
k  

error error order error order error order 

L∞ 4.89E-02 2.48E-02 0.98 5.68E-03 2.13 1.31E-03 2.11 1 

L1 1.80E-01 5.91E-02 1.60 1.31E-02 2.17 3.29E-03 1.99 

L∞ 3.04E-03 2.18E-04 3.80 1.51E-05 3.85 9.11E-07 4.05 2 

L1 8.90E-03 5.88E-04 3.92 3.91E-05 3.91 2.41E-06 4.02 

L∞ 4.06E-05 7.16E-07 5.82 1.20E-08 5.89 - - 3 

L1 7.87E-05 1.62E-06 5.60 2.50E-08 6.01 - - 

Table 1: Diffusion of a sinusoidal wave on an irregular grid by means of the DRSV method: error norms  

3.2 Advection-diffusion of a sinusoidal wave 

In this numerical experiment, the following equation is considered: 
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with sinusoidal initial conditions given by equation (13), with the choices D=1 m
2
/s and c=1 

m/s and periodic boundaries conditions. The problem admits the exact solution 

( ) ( )ctxetxu Dt −= − sin, . (16) 

The computational domain, L=2π long, has been subdivided in NS uniform spectral cells, 

and the solution has been computed up to t = 1 s. The diffusive fluxes between the finite 

volumes have been calculated using the DRSV approach, while the simple upwind formula 

( ) ( )ccuccuF jijic ++−= −
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+

+ 1,1,
2

1

2

1
. (17) 

has been used for the advective flux through interface xi,j+1/2 between the finite volume Vi,j and 

the finite volume Vi,j+1. The test has been repeated for k =1, 2 and 3 finite volumes per cell, 

and for increasing NS. The L∞ and L1 norms of the error, calculated with reference to the finite 

volume-averaged values of u, are presented in Table 2. 

 
NS=5 NS=10 NS=20 NS=40 

k  

error error order error order error order 

L∞ 1.35E-01 8.83E-02 0.614 5.06E-02 0.804 2.70E-02 0.904 1 

L1 5.49E-01 3.59E-01 0.614 2.00E-01 0.839 1.08E-01 0.892 

L∞ 1.49E-02 2.17E-03 2.78 2.92E-04 2.89 3.82E-05 2.93 2 

L1 4.17E-02 5.99E-03 2.80 8.15E-04 2.88 1.07E-04 2.93 

L∞ 1.31E-03 1.56E-04 3.07 2.17E-05 2.84 2.88E-06 2.92 3 

L1 4.41E-03 6.22E-04 2.83 8.71E-05 2.84 1.15E-05 2.92 

Table 2: Advection-diffusion of a sinusoidal wave on a regular grid by the DRSV method: error norms. 

We observe that the advective fluxes are calculated with order of accuracy k, while the 

diffusive fluxes are calculated with order of accuracy greater than 2k-1: the global order of 

accuracy is equal or greater than k, as confirmed by inspection of Table 2. 



Luca Cozzolino, Renata Della Morte, Carmine Covelli and Domenico Pianese 

 7 

3.3 Solution of the Shallow-water equations with passive transport of a constituent 

In this test, inspired to that presented by Xing and Shu
10

, the solution of the equations (1) 

and (2) is considered. In a channel, 1 m long, the initial conditions and the bed elevation are 

defined by: 
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The initial conditions (18) are complemented by periodic boundary conditions. The dispersion 

coefficient depends on the local characteristics of the flow, and could be evaluated by means 

of the Elder’s formula
12

, which is valid for plane turbulent flows: here, only for demonstrative 

purposes, the numerical test has been accomplished twice, using first a constant dispersion 

coefficient D = 0.1 m
2
/s, then a constant dispersion coefficient D = 0 m

2
/s. For calculations, 

NS = 20 spectral cells and k = 3 finite volumes per cell were used. The results are presented in 

Figure 1. 
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Figure 1: Periodic wave in a channel. (Left) Water surface height after t=1 s. (Right) Depth-averaged 

concentration after t=1 s.  

Inspection of Figure 1 (left panel) shows how the results of the proposed model, with 

reference to the water surface elevation, compare well with the solutions available in 

literature
13

, also in the case of a modest number of freedom degrees (60 finite volumes). 

Moreover, in Figure 1, right panel, a comparison is made between the concentration 

distributions obtained using D = 0 m
2
/s and D = 0.1 m

2
/s, respectively: the effect of the 

coefficient of dispersion is the smoothing of the concentration distribution, tending to a 

constant concentration long-term distribution. 

4 CONCLUSIONS 

In this paper, a Spectral Volume model for the approximate solution of Shallow-water 

Equations has been presented, complemented with the equation of advective-diffusive 
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transport of a passive constituent. The well-balanced model, which is third-order accurate in 

time and space, makes use of a novel scheme for the diffusive flux calculations, named 

Derivative Recovery Spectral Volume: preliminary numerical tests seem to show how the 

DRSV scheme is a valid alternative to other well known schemes for diffusive fluxes 

calculation in high-order finite volume schemes. In the next future, the authors plan to find a 

rigorous demonstration of the accuracy and stability characteristics of the DRSV method, and 

to implement its application to the case of unstructured grids. 
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