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Abstract Rectangular conductors play an important role in industrial busbar systems, 
transformers, MEMs devices and planar transmission line structures. Unfortunately, no 
analytical expressions exist for obtaining the dc and the ac internal inductances or the ac 
resistance per-unit length of a linear conductor with a rectangular cross section, so that 
approximate expressions or numerically obtained charts must be used. This paper 
introduces a novel procedure for obtaining a “virtual chart”, which gives the dc internal 
inductance of a rectangular conductor as a function of its thickness to width ratio, obtained 
in a single numerical simulation using the Proper Generalized Decomposition (PGD). The 
solution is obtained as a separated representation, which is, at the same time, very easy to 
store and very fast to operate with. The results obtained are compared with analytical 
solutions available in the technical literature. The proposed computation process can be 
easily extended to conductors of arbitrary shape, or to additional parametric dimensions 
as the frequency. 

 

1. INTRODUCTION 

Rectangular conductors play an important role in planar transmission line structures, such as 
microstrip lines, coplanar strips, signal traces of printed circuit boards, and also in industrial 
busbars used in switchboards, distribution boards, or substation installations. The DC internal 
inductance of such a conductor is related to the magnetic energy stored within the conductor 
itself, and has a clear physical meaning, while the external inductance of a single conductor, 
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related to the magnetic energy stored in the field outside of the conductor, does not [1]. 
Unfortunately, no analytical expressions exist for obtaining the dc and the ac internal 
inductances or the ac resistance per-unit length of a linear conductor with a rectangular cross 
section, so that approximate expressions [1-3], or numerically obtained charts must be used. In 
this paper, a numerical method for obtaining the DC internal inductance of a rectangular 
conductor as a function of its thickness to width (𝑡/𝑤) ratio is presented, using the PGD ([4], 
[5], [9], [10]). The advantage of using a parametric formulation in this context is that the 
solutions for different rectangular conductors with a wide range of different 𝑡/𝑤 ratios are 
computed using a single simulation, and the solutions are obtained in a compact, separated 
representations form. The solution, expressed in this compact way, can be easily embedded in 
existing code for busbar analysis and design, instead of the usual look-up tables currently used. 
Besides, the proposed approach scales nicely with the number of parameters used in the 
simulation (frequency, etc.), which is not the case with high-dimensional look-up tables.  

The procedure presented in this paper is not exclusive for rectangular conductors, which have 
been selected for illustrating the proposed approach due to its great industrial importance. On 
the contrary, the application of the procedure for other, non-rectangular cross-section shapes 
can be easily accomplished by replacing the separated representation of the rectangular cross-
shape used in this paper with the desired one, without any further modification of the PGD 
algorithm presented here. 

This paper is structured as follows. In Section 2, a brief reminder of the concept of the internal 
inductance of a conductor is presented, and a numerical approximation from [1] for the case of 
a rectangular conductor is given. Section 3 presents the PGD algorithm used to obtain the virtual 
chart of the dc inductance of this conductor for a wide range of 𝑡/𝑤 ratios, and the solution is 
compared with [1]. Section 4 presents the conclusions of this work. 

2. INTERNAL INDUCTANCE FOR A CONDUCTOR 

The internal inductance 𝐿%	 per unit length of an infinitely long conductor of arbitrary shape 
is given by [1] 
 

'(
)
= +

	,-
𝐵 · 𝐻	𝑑𝑆 = +

34	,-
𝐵 · 𝐵	𝑑𝑆 = 		 +

34	,-
B6(𝑥, 𝑦)< + B>(𝑥, 𝑦)< 	𝑑𝑥	𝑑𝑦?@	?A

, (1) 

where 𝐼 is the current, the integral is carried out over the cross section of the conductor, and 
the conductor is assumed to be made of a non-magnetic material such as copper or 
aluminium, with magnetic permeability µ0. Considering that the current has only a 𝑧-
component (conductor parallel to the 𝑧 axis, see Fig. 1), the magnetic vector potential 
(MVP) has also a single non-zero component, 𝐴E, directed along the current. In this case, 
the components of the magnetic induction	𝐵 in (1) can be expressed as: 
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𝐵 = ∇x𝐴 → 𝐵I =
𝜕𝐴E
𝜕𝑦 ;	𝐵L = −

𝜕𝐴E
𝜕𝑥  (2) 

 

 
Figure 1. Conductor with rectangular cross-section, parallel to the 𝑧-axis. 

The MVP generated by the conductor of Fig. 1 with a dc current density 𝐽 = 𝐼/(𝑤 · 𝑡), where 
𝐼 is the total current carried by the conductor, can be obtained by considering that the 
conductor is made of elementary, infinitesimally thin sub-conductors, all of them with the 
same current density. A sub-conductor placed at the origin generates a MVP distribution 
given by 

𝐴𝑧0 𝑥, 𝑦 =
𝜇𝑜𝐼
2𝜋𝑤𝑡 ln 𝑥< + 𝑦< + 𝐶 (3) 

where 𝐶 is a constant value. The total MVP generated by the conductor is found by adding 
up the contribution of each sub-conductor, which results in the following integral expression 

𝐴𝑧(𝑥, 𝑦) =
𝜇𝑜𝐼
2𝜋𝑤𝑡 ln	[ 𝑥 − 𝑥′ 2 + 𝑦 − 𝑦′ 2]

𝑤
2

−𝑤2

𝑡
2

−𝑡2

𝑑𝑥′𝑑𝑦′ + 𝐶 
(4) 

 

 
Applying (2) to (4) gives the components of the magnetic induction as  

𝐵𝑥(𝑥, 𝑦) =
𝜇𝑜𝐼
2𝜋𝑤𝑡
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𝐵𝑦(𝑥, 𝑦) = −
𝜇𝑜𝐼
2𝜋𝑤𝑡

(𝑥 − 𝑥′)
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𝑤
2

−𝑤2

𝑡
2

−𝑡2
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(5) 

and, substituting (5) in (1), gives the expression of the internal dc inductance of the 
rectangular conductor as [1] 
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𝐿%Z[
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where 𝑊+ and 𝑊< are given by 
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As [1] and [6] indicate, the integral (6) cannot be evaluated in closed form, because it results 
in poly-logarithms, which cannot be expressed in terms of elementary functions. So, the 
integral (6) must be computed numerically, for each value of the 𝑡/𝑤 ratio. Approximate 
formulae have been proposed in [1], [6] and [7] for the case of a small 𝑡/𝑤 ratio. The lack 
of closed solutions also arises in the cases of other conductor shapes, as in the case of 
conductors with elliptical or triangular cross-sections, as presented in [6].  

3. PROPOSED APPROACH TO OBTAIN A PARAMETRIC SOLUTION OF THE 
DC INTERNAL INDUCTANCE FOR A RECTANGULAR CONDUCTOR USING 
THE PGD 
The approach followed in this paper is different to the use of expressions to approximate 
the integral (6), as presented previously in the technical literature. Instead, the proposed 
method for obtaining the dc inductance of a rectangular conductor is based on solving the 
diffusion equation of the magnetic vector potential (MVP) of the conductor fed with a 
constant dc current,  
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𝜕<𝐴E 𝑥, 𝑦
𝜕𝑥< +

𝜕<𝐴E 𝑥, 𝑦
𝜕𝑦< = −𝜇] · 𝐽]	(𝑥, 𝑦)						𝑤𝑖𝑡ℎ		𝐴E|Ihi = 𝐴E|Lhi = 0 (7) 

 
where 𝐽] is the density current through the conductor cross section. Traditionally, this 
equation must be solved numerically for each desired value of the 𝑡/𝑤 ratio of the 
conductor. Instead, using the PGD approach ([4], [5]), the 𝑡/𝑤 ratio can be considered as an 
additional dimension of the problem. That is, instead of computing the 2D MVP  𝐴E 𝑥, 𝑦 	in 
(7) as a function of the two spatial dimensions 𝑥, 𝑦, a 3D MVP  𝐴E 𝑥, 𝑦, 𝑟  solution to (7) is 
sought, where 𝑟 is an additional dimension used to represent the different values of the 
cross-sectional ratio of the conductor. The addition of the parameter 𝑟 as a new dimension 
has a very low computational impact, and allows the construction of a virtual chart with the 
dc inductance of a rectangular conductor as a function of its 𝑡/𝑤 solving just a single 
problem in the extended domain ΩI	x		ΩL	x		Ωl, that is: 
 
 
𝜕<𝐴E 𝑥, 𝑦, 𝑟

𝜕𝑥< +
𝜕<𝐴E 𝑥, 𝑦, 𝑟

𝜕𝑦< = −𝜇] · 𝐽]	(𝑥, 𝑦, 𝑟)						𝑤𝑖𝑡ℎ		𝐴E|Ihi = 𝐴E|Lhi = 0 (8) 

 

Using the PGD approach, the 3D MVP 𝐴E 𝑥, 𝑦, 𝑟 	in (8) is expressed as a sum of products of 
elementary one dimensional functions: 

𝐴E(𝑥, 𝑦, 𝑟) = 𝑋% 𝑥 𝑌% 𝑦 𝑅% 𝑟
%hp

%h+

 (9) 

Each one of the 𝑛 product terms that appear in (9) is termed a “mode”, and, in the case of 
the MVP, they are automatically obtained following the PGD procedure, which is briefly 
presented in the next subsection, although an exhaustive explanation can be found in [4] 
and [5]. The value of 𝑛 depends of the degree of accuracy used to represent the MVP, and 
is established using an error estimator in the PGD procedure. 

The imposed current density in (8), J]	 x, y, r , is represented also as a sum of products, 

𝐽](𝑥, 𝑦, 𝑟) = 𝐽𝑥% 𝑥 · 𝐽𝑦% 𝑦 · 𝐽𝑟% 𝑟
%ht

%h+

 (10) 

In the context of the problem addressed in this paper, a particularly simple structure has 
been used for (10), which allows solving simultaneously (8) for a wide range of different 
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conductor's 𝑡/𝑤 ratios, as depicted graphically in Fig. 2: 

• Each particular rectangular conductor 𝑖, among 𝑁l different 𝑡/𝑤 ratios, can be 
represented with a single product 𝐽𝑥% 𝑥 · 	 𝐽𝑦% 𝑦  of the 𝑥 and 𝑦 components, each one 
having a 1 value under the projection of the conductor's shape on the respective axis, 
and 0 elsewere. 

• The selection of a particular value of the 𝑡/𝑤 ratio	is made through the dimension 𝑟 in 
a straightforward way: the only non-zero element of the discrete component 𝐽𝑟% 𝑟  is 
precisely 𝑟 = 𝑖, and has the value of the current density imposed in the conductor,	𝐽. 
That is, 

𝐽l% 𝑟 = 𝐽 𝑟 = 𝑖
0 𝑟 ≠ 𝑖 									𝑖 = 0. . 𝑁l    (11) 

This particular choice implies also that the number of modes of the imposed current 
density (10), 𝑚, is equal to the number of different		𝑡/𝑤 ratios that are to be computed, 𝑁l, 
that is, 	𝑁l = 𝑚. The two first modes of the imposed current density are represented 
graphically in Fig. 2.  

 

Figure 2. Modes used for representing a rectangular conductor with different 𝑡/𝑤 ratios using an 
additional 𝑟 dimension. 

To solve (8) numerically, the boundary condition at infinity in (8) is replaced by a boundary 
condition on a finite domain, Ω = Ω6×	Ω> = −𝐿, 𝐿 ×(−𝐿, 𝐿), so that 𝐿 is much greater than 
the dimensions of the conductor (in this work 𝐿 is 100 times the width of the conductor). 
Using (9), (10) and (11), (8) can be expressed as: 
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𝜕<𝑋%
𝜕𝑥< 𝑌%	𝑅%+𝑋%

𝜕<𝑌%
𝜕𝑦< 	𝑅%

p

%h+

	= 	−𝜇] 𝐽𝑥z · 𝐽𝑦z 	 · 𝐽𝑟z	
t

zh+

		𝑤𝑖𝑡ℎ		𝐴E|Ih±' = 𝐴E|Lh±' = 0 (12) 

 
       
The independent variables are no longer shown in (12) for simplicity. The functions 𝑋%, 𝑌% 
and 𝑅% can be computed numerically, using an iterative non-linear procedure. Supposing 
that the first (n-1) modes have been computed, the nth mode, unknown, is obtained via a 
Galerkin procedure applied to (12), as explained in full detail in [4] and [5] 
 

𝐴E = 𝑋𝑖 · 𝑌𝑖 	 · 𝑅𝑖
p

%h+

= 𝑋𝑖 · 𝑌𝑖 	 · 𝑅𝑖	
p`+

%h+

+ 𝑋𝑛 · 𝑌𝑛 · 𝑅𝑛 			⇒ 

 
𝐴E∗ = 𝑋𝑛∗ · 𝑌𝑛 · 𝑅𝑛 +	𝑋𝑛 · 𝑌𝑛∗ · 𝑅𝑛 +	𝑋𝑛 · 𝑌𝑛 · 𝑅𝑛∗ 	 

(13) 

 

𝐴E∗
𝜕<𝑋%
𝜕𝑥< 𝑌%	𝑅%+𝑋%

𝜕<𝑌%
𝜕𝑦< 	𝑅%

p

%h+

+ 𝜇~ 𝐽𝑥z · 𝐽𝑦z · 𝐽𝑟𝑗

t

zh+

lh	��

lh]

Lh'

Lh`'

Ih'

Ih`'

𝑑𝑥𝑑𝑦𝑑𝑟 = 0 (14) 

 
 
To find the mode n an iterative procedure is followed. Suppose that the functions 𝑌p and 𝑅p 
are known at a given iteration, that is, 𝐴E∗ = 𝑋p∗ · 𝑌p · 𝑅p	. The substitution of (13) in (14) 
gives 
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(15) 
 
 
This corresponds to the PDE 
 

2

02
1 1 1
· · · · 0

n n m
i

i i i j j
i i j

XX Jx
x= = =

¶
a + b + g µ =

¶å å å  (16) 

 
And, moving all the known terms to the right-hand side (RHS), gives 
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This equation is solved in the 𝑥 domain with a simple 1D finite differences or a 1D FE 
method, giving the value of 𝑋p in the present iteration. With this value, and assuming now 
𝑋p and  𝑅p	known, the computation of a new value of 𝑌p is performed as 
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This corresponds to the PDE 
2
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and, moving all the known terms to the RHS, gives 
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This equation is solved in the y domain with a simple 1D finite differences or a 1D FE 
method, giving the value of 𝑌p. With this value, and assuming now 𝑋p and 𝑌p	known, the 
computation of a new value of 𝑅p is performed as 
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(21) 
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This corresponds to the PDE 
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and, moving all the known terms to the RHS, gives 
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But (18) is just an algebraic equation, which gives directly the value of 𝑅p as  
 

( )( ) ( )
( )

1

0
1 1

'' '' · '' · ·

'' ''

n m

i i i j j
i j

n
n n

R Jr
R

-

= =

- a +b - g µ
=

a +b

å å

 

(24) 

 
finishing the present iteration. At every iteration the new values of 𝑋p, 𝑌p  and 𝑅p are 
compared with the previous ones, and if the absolute value of their difference falls below a 
predefined threshold, the iterations are finished, and the solution is updated with the new 
values, corresponding to the n mode. This iterative process begins again for computing the 
next 𝑛+1 mode. When the absolute value of the new mode falls below a predefined 
threshold, the solution is considered valid and the process finishes. The whole process starts 
assuming that no mode is known, that is, 𝑛=0.  
 
It is worth to mention that, contrary to the case of FEM, the addition of a new dimension 𝑟 
to obtain the MVP for a wide range of conductors with different 𝑡/𝑤 has a very low impact 
on the mathematical complexity of the PGD method, because it implies just solving a new 
algebraic equation, similar to (24). So, the PGD method encourages the use of additional, 
"parametric" dimensions which make possible to obtain the solutions of a given problem 
for a wide range of its characteristic parameters (such as the 𝑡/𝑤	ratio), with a cost 
comparable to the solution with just one particular value of these parameters. 

Among the advantages of using the PGD for obtaining the internal inductance of the 
conductor with rectangular cross section, the following ones can be highlighted: 

1. The 1D meshes used to obtain the 1D elementary functions 𝑋% 𝑥  and 𝑌% 𝑦  can be 
very large and fine. If a mesh of 𝑁I  nodes is used for the 𝑥 variable, and 𝑁L nodes 
for the y variable, the number of nodes of the mesh is not 𝑁I · 𝑁L, as expected when 
solving the 2D problem in (7), because only 1D PDE must be solved using (16) and 
(19). This feature allows for the use of uniform meshes that can be very large, to 
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properly establish the boundary conditions 𝐴𝑧 𝑥=∞= 𝐴𝑧 𝑦=∞ = 0, and also very 
dense, to reach a high accuracy in the computation of the internal inductance, 
especially around the corners of the conductor cross section. The use of uniform 
meshes simplifies the solution of the problem, and in this paper the 1D PDEs have 
been solved using a simple finite difference method.  

2. If a mesh of 𝑁l nodes is used for the 𝑟 variable, then 𝑁l simulations of 2D 
dimensional problems (one for each 𝑡/𝑤 ratio) would be needed to calculate each 
solution of the MVP using traditional FEM methods. However, with the proposed 
approach, just one simulation is needed to obtain the MVP computed for the full 
range of 𝑡/𝑤 ratios corresponding to the 𝑁l	discrete values assigned to dimension 𝑟, 
which reduces the computer time required, compared with traditional numerical 
methods based on multidimensional meshes. Additionally, the decomposition 
achieved by the PGD allows storing all the solutions of the PDE more efficiently. 
The value of the MVP for a rectangular conductor with a given 𝑡/𝑤 ratio, 
corresponding to a value 𝑟~, is given simply by  

𝐴E = 𝑋% 𝑥 𝑌% 𝑦 𝑅% 𝑟 = 𝑟]

%hp

%h+

 (25) 

3. To obtain the components of the magnetic induction (2) from the solution of the 
MVP in (8) it is not necessary to compute the full 2D representation of (9). Instead, 
the derivatives in (2) can be calculated directly using the separated 1D representation 
of (9), which allows to perform the integral (1) using simple 1D domains.  

𝐵𝑥 =
𝜕𝐴𝑧(𝑥, 𝑦, 𝑟)

𝜕𝑦 = 𝑋𝑖 𝑥 ·
𝜕𝑌𝑖(𝑦)
𝜕𝑥

𝑛

𝑖=1
· 𝑅𝑖 𝑟 = 𝑟0  (26) 

𝐵𝑦 = −
𝜕𝐴𝑧 𝑥, 𝑦, 𝑟

𝜕𝑥 = − 𝑌𝑖 𝑥 ·
𝜕𝑋𝑖 𝑦
𝜕𝑥

𝑛

𝑖=1
· 𝑅𝑖 𝑟 = 𝑟0  (27) 

4. The method can be easily extended to conductors with any arbitrary cross-sections 
shapes. The only change to introduce is building the separated form of 𝐽](𝑥, 𝑦, 𝑟) (10) 
for the new geometries of the conductor.  

4. RESULTS OBTAINED WITH THE PROPOSED APPROACH  

The inductance of a conductor of rectangular cross-section has been obtained using the 
proposed method for different 𝑡/𝑤 ratios, and the results have been compared with the 
theoretical values given by (6), which has been integrated numerically. Figures 2, 3 and 4 
show the results obtained with the PGD after solving (8). The 3D MVP of (9) has been 



Manuel Pineda-Sanchez, Jordi Burriel-Valencia, Abel Sancarlos-González, Ruben Puche-Panadero, Juan 
Perez-Cruz 

 

 11 

represented in these figures for three particular values of dimension 𝑟, those corresponding 
to 𝑡/𝑤 ratios equal to 1, 0.5 and 0.25. 

 
Figure 2. MVP generated by the conductor with rectangular cross-section with ratio 𝑡/𝑤 =1 

 

 

Figure 3.  MVP generated by the conductor with rectangular cross-section with ratio 𝑡/𝑤 =0.5 
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Figure 4. MVP generated by the conductor with rectangular cross-section with ratio 𝑡/𝑤 =0.25  

The internal dc inductance of the conductor with rectangular cross section has ben obtained 
for different 𝑡/𝑤 ratios, and a plot of the results is presented in Fig. 5, along with the results 
obtained by numerical integration of (6). 

 
Figure 5. DC internal inductance Lidc of a conductor with a rectangular cross section, for different 

ratios 𝑡/𝑤, computed by numerical integration of (6) and with the proposed approach. 
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5. CONCLUSIONS 

In this paper, the PGD has been applied to compute the dc inductance of a conductor with 
rectangular cross section, as a function of its thickness to width 𝑡/𝑤 ratio. The use of a 
parametric formulation yields all the values for a wide range of 𝑡/𝑤 ratios, solving just one 
PDE in a multidimensional space 	 𝑥, 𝑦, 𝑟 , where a new dimension 𝑟 accounts for all the 
possible values of the ratio 𝑡/𝑤 in a given range. The results have been found coincident 
with the numerical integration of the analytical formula available for this case, which 
validates the proposed approach. Besides, with the proposed method, the results obtained 
are available as a “virtual chart”, which contains the solution for all of the values within the 
range of 𝑡/𝑤 ratios selected. The dc inductance of conductors with arbitrary shapes, other 
than the rectangular one, can be found easily with the proposed approach by just expressing 
this shape as a separated representation, easily computed using the SVD (Singular Value 
Decomposition). Following this approach, in a future work, the frequency of the current 
will be introduced also as an additional parametric dimension, which will generate a single 
4D solution (	𝑥, 𝑦, 𝑡/𝑤	ratio and frequency) that provides the internal inductance and the 
resistance of a rectangular conductor for any frequency and for any 𝑡/𝑤	ratio  of the 
conductor. 
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